Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-17T18:29:31.561Z Has data issue: false hasContentIssue false

Taylor columns and inertial-like waves in a three-dimensional odd viscous liquid

Published online by Cambridge University Press:  19 October 2023

E. Kirkinis*
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL 60208, USA
M. Olvera de la Cruz
Affiliation:
Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: ekirkinis@gmail.com

Abstract

Odd viscous liquids are endowed with an intrinsic mechanism that tends to restore a displaced particle back to its original position. Since the odd viscous stress does not dissipate energy, inertial oscillations and inertial-like waves can become prominent in such a liquid. In this paper, we show that an odd viscous liquid in three dimensions may give rise to such axially symmetric waves and also to plane-polarized waves. We assume tacitly that an anisotropy axis giving rise to odd viscous effects has already been established, and proceed to investigate the effects of odd viscosity on fluid flow behaviour. Numerical simulations of the full Navier–Stokes equations show the existence of inertial-like waves downstream of a body that moves slowly along the axis of an odd viscous liquid filled cylinder. The wavelength of the numerically determined oscillations agrees well with the developed theoretical framework. When odd viscosity is the dominant effect in steady motions, a modified Taylor–Proudman theorem leads to the existence of Taylor columns inside such a liquid. Formation of the Taylor column can be understood as a consequence of helicity segregation and energy transfer along the cylinder axis at group velocity, by the accompanying inertial-like waves, whenever the reflection symmetry of the system is lost. A number of Taylor column characteristics known from rigidly rotating liquids are recovered here for a non-rotating odd viscous liquid. These include counter-rotating swirling liquid flow above and below a body moving slowly along the anisotropy axis. Thus in steady motions, odd viscosity acts to suppress variations of liquid velocity in a direction parallel to the anisotropy axis, inhibiting vortex stretching and vortex twisting. In unsteady and nonlinear motions, odd viscosity enhances the vorticity along the same axis, thus affecting both vortex stretching and vortex twisting.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanov, A., Can, T. & Ganeshan, S. 2018 Odd surface waves in two-dimensional incompressible fluids. SciPost Phys. 5 (1), 010.CrossRefGoogle Scholar
Asselin, O. & Young, W.R. 2020 Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr. 50 (6), 16991716.CrossRefGoogle Scholar
Avron, J.E. 1998 Odd viscosity. J. Stat. Phys. 92 (3–4), 543557.CrossRefGoogle Scholar
Avron, J.E., Seiler, R. & Zograf, P.G. 1995 Viscosity of quantum Hall fluids. Phys. Rev. Lett. 75 (4), 697.CrossRefGoogle ScholarPubMed
Banerjee, D., Souslov, A., Abanov, A.G. & Vitelli, V. 2017 Odd viscosity in chiral active fluids. Nat. Commun. 8 (1), 1573.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bire, S., Kang, W., Ramadhan, A., Campin, J.-M. & Marshall, J. 2022 Exploring ocean circulation on icy moons heated from below. J. Geophys. Res. 127, e2021JE007025.CrossRefGoogle Scholar
Bush, J.W.M., Stone, H.A. & Bloxham, J. 1995 Axial drop motion in rotating fluids. J. Fluid Mech. 282, 247278.CrossRefGoogle Scholar
Bush, J.W.M., Stone, H.A. & Tanzosh, J.P. 1995 Particle motion in rotating viscous fluids: historical survey and recent developments. Curr. Top. Phys. Fluids 1, 337355.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Dahler, J.S. & Scriven, L.E. 1961 Angular momentum of continua. Nature 192, 3637.CrossRefGoogle Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A. 2014 The dynamics and scaling laws of planetary dynamos driven by inertial waves. Geophys. J. Intl 198 (3), 18321847.CrossRefGoogle Scholar
Davidson, P.A. & Ranjan, A. 2018 On the spatial segregation of helicity by inertial waves in dynamo simulations and planetary cores. J. Fluid Mech. 851, 268287.CrossRefGoogle Scholar
Dransfeld, L., Dwane, O. & Zuur, A.F. 2009 Distribution patterns of ichthyoplankton communities in different ecosystems of the Northeast Atlantic. Fish. Oceanogr. 18 (6), 470475.CrossRefGoogle Scholar
Fruchart, M., Scheibner, C. & Vitelli, V. 2023 Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471510.CrossRefGoogle Scholar
Ganeshan, S. & Abanov, A.G. 2017 Odd viscosity in two-dimensional incompressible fluids. Phys. Rev. Fluids 2 (9), 094101.CrossRefGoogle Scholar
Gao, F., Chew, J.W. & Marxen, O. 2020 Inertial waves in turbine rim seal flows. Phys. Rev. Fluids 5 (2), 024802.CrossRefGoogle Scholar
Greenspan, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hulsman, H., van Waasdijk, E.J., Burgmans, A.L.J., Knaap, H.F.P. & Beenakker, J.J.M. 1970 Transverse momentum transport in polyatomic gases under the influence of a magnetic field. Physica 50 (1), 5376.CrossRefGoogle Scholar
Khain, T., Scheibner, C., Fruchart, M. & Vitelli, V. 2022 Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. J. Fluid Mech. 934, A23.CrossRefGoogle Scholar
Kirkinis, E. 2017 Magnetic torque-induced suppression of van-der-Waals-driven thin liquid film rupture. J. Fluid Mech. 813, 9911006.CrossRefGoogle Scholar
Kirkinis, E. 2023 Null-divergence nature of the odd viscous stress for an incompressible liquid. Phys. Rev. Fluids 8 (1), 014104.CrossRefGoogle Scholar
Kirkinis, E. & Andreev, A.V. 2019 Odd viscosity-induced stabilization of viscous thin liquid films. J. Fluid Mech. 878, 169189.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics, vol. 6. Course of Theoretical Physics. Pergamon Press Ltd.Google Scholar
Lifshitz, E.M. & Pitaevskii, L.P. 1981 Physical Kinetics, vol. 10. Course of Theoretical Physics. Pergamon Press.Google Scholar
Long, R.R. 1953 Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid. J. Atmos. Sci. 10 (3), 197203.Google Scholar
Markovich, T. & Lubensky, T.C. 2021 Odd viscosity in active matter: microscopic origin and 3D effects. Phys. Rev. Lett. 127 (4), 048001.CrossRefGoogle ScholarPubMed
Maxworthy, T. 1970 The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid. J. Fluid Mech. 40 (3), 453479.CrossRefGoogle Scholar
Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.CrossRefGoogle Scholar
Moffatt, H.K. 1970 Dynamo action associated with random inertial waves in a rotating conducting fluid. J. Fluid Mech. 44 (4), 705719.CrossRefGoogle Scholar
Moore, D.W. & Saffman, P.G. 1968 The rise of a body through a rotating fluid in a container of finite length. J. Fluid Mech. 31 (4), 635642.CrossRefGoogle Scholar
Ogilvie, G.I. 2013 Tides in rotating barotropic fluid bodies: the contribution of inertial waves and the role of internal structure. Mon. Not. R. Astron. Soc. 429 (1), 613632.CrossRefGoogle Scholar
Rinaldi, C. 2002 Continuum modeling of polarizable systems. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Schwalbach, E.J., Davis, S.H., Voorhees, P.W., Warren, J.A. & Wheeler, D. 2012 Stability and topological transformations of liquid droplets on vapor–liquid–solid nanowires. J. Appl. Phys. 111 (2), 024302.CrossRefGoogle Scholar
Soni, V., Bililign, E.S., Magkiriadou, S., Sacanna, S., Bartolo, D., Shelley, M.J. & Irvine, W.T.M. 2019 The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15 (11), 11881194.CrossRefGoogle Scholar
Tanzosh, J.P. & Stone, H.A. 1994 Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech. 275, 225256.CrossRefGoogle Scholar
Tritton, D.J. 1988 Physical Fluid Dynamics. Oxford University Press.Google Scholar
Truesdell, C. & Noll, W. 1992 The Nonlinear Field Theories Of Mechanics, 2nd edn. Springer.CrossRefGoogle Scholar
Whitham, G.B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Yih, C.-S. 1959 Effects of gravitational or electromagnetic fields on fluid motion. Q. Appl. Maths 16 (4), 409415.CrossRefGoogle Scholar
Yih, C.-S. 1988 Fluid Mechanics. West River Press.Google Scholar