Skip to main content
×
×
Home

Temporal stability of free liquid threads with surface viscoelasticity

  • A. Martínez-Calvo (a1) and A. Sevilla (a1)
Abstract

We analyse the effect of surface viscoelasticity on the temporal stability of a free cylindrical liquid jet coated with insoluble surfactant, extending the results of Timmermans & Lister (J. Fluid Mech., vol. 459, 2002, pp. 289–306). Our development requires, in particular, deriving the correct expressions for the normal and tangential stress boundary conditions at a general axisymmetric interface when surface viscosity is modelled with the Boussinesq–Scriven constitutive equation. These stress conditions are applied to obtain a new dispersion relation for the liquid thread, which is solved to describe its temporal stability as a function of four governing parameters, namely the capillary Reynolds number, the elasticity parameter, and the shear and dilatational Boussinesq numbers. It is shown that both surface viscosities have a stabilising influence for all values of the capillary Reynolds number and elasticity parameter, the effect being more pronounced at low capillary Reynolds numbers. The wavenumber of maximum amplification depends non-monotonically on the Boussinesq numbers, especially for very viscous threads at low values of the elasticity parameter. Finally, two different lubrication approximations of the equations of motion are derived. While the validity of the leading-order model is limited to small enough values of the elasticity parameter and of the Boussinesq numbers, a higher-order parabolic model is able to accurately capture the linearised behaviour for the whole range of values of the four control parameters.

Copyright
Corresponding author
Email address for correspondence: amcalvo@ing.uc3m.es
References
Hide All
Ambravaneswaran, Bala & Basaran, O. A. 1999 Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11 (5), 9971015.
Aris, R. 1962 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice Hall.
Boussinesq, J. V. 1913 Sur l’existence d’une viscosité superficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu. J. Ann. Chim. Phys. 29, 349357.
Campana, D. M. & Saita, F. A. 2006 Numerical analysis of the Rayleigh instability in capillary tubes: the influence of surfactant solubility. Phys. Fluids 18, 022104.
Campana, D. M., Ubal, S., Giavedoni, M. D. & Saita, F. A. 2011 A deeper insight into the dip coating process in the presence of insoluble surfactants: a numerical analysis. Phys. Fluids 23 (5), 052102.
Carroll, B. J. & Lucassen, J. 1974 Effect of surface dynamics on the process of droplet formation from supported and free liquid cylinders. J. Chem. Soc. Faraday Trans. 70, 12281239.
Champougny, L., Scheid, B., Restagno, F., Vermant, J. & Rio, E. 2015 Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matt. 11 (14), 27582770.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14 (4), 13641376.
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2009 Breakup of surfactant-laden jets above the critical micelle concentration. J. Fluid Mech. 629, 195219.
Dravid, V., Songsermpong, S., Xue, Z., Corvalan, C. M. & Sojka, P. E. 2006 Two-dimensional modeling of the effects of insoluble surfactant on the breakup of a liquid filament. Chem. Engng Sci. 61, 35773585.
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458.
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205222.
García, F. J. & Castellanos, A. 1994 One-dimensional models for slender axisymmetric viscous liquid jets. Phys. Fluids 6 (8), 26762689.
Hajiloo, A., Ramamohan, T. R. & Slattery, J. C. 1987 Effect of interfacial viscosities on the stability of a liquid thread. J. Colloid Interface Sci. 117 (2), 384393.
Hameed, M., Siegel, M., Young, Y.-N., Li, J., Booty, M. R. & Papageorgiou, D. T. 2008 Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid. J. Fluid Mech. 594, 307340.
Hansen, S., Peters, G. W. M. & Meijer, H. E. H. 1999 The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331349.
Joye, J.-L., Hirasaki, G. J. & Miller, C. A. 1994 Asymmetric drainage in foam films. Langmuir 10, 31743179.
Kwak, S. & Pozrikidis, C. 2001 Effect of surfactants on the stability of instability of a liquid thread or annular layer. Part 1. Quiescent fluids. Intl J. Multiphase Flow 27, 137.
Langevin, D. 2014 Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 46, 4765.
Liao, Y. C., Franses, E. I. & Basaran, O. A. 2006 Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18 (2), 022101.
Milliken, W. J., Stone, H. A. & Leal, L. G. 1993 The effect of surfactant on the transient motion of Newtonian drops. Phys. Fluids A 5 (1), 6979.
Pereira, A. & Kalliadasis, S. 2008 On the transport equation for an interfacial quantity. Eur. Phys. J. Appl. Phys. 44 (2), 211214.
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides. Gauthier-Villars.
Ponce-Torres, A., Herrada, M. A., Montanero, J. M. & Vega, J. M. 2016a Linear and nonlinear dynamics of an insoluble surfactant-laden liquid bridge. Phys. Fluids 28, 112103.
Ponce-Torres, A., Montanero, J. M., Herrada, M. A., Vega, E. J. & Vega, J. M. 2017 Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys. Rev. Lett. 118, 024501.
Ponce-Torres, A., Vega, E. J. & Montanero, J. M. 2016b Effect of surface-active impurities on the liquid bridge dynamics. Exp. Fluids 57, 67.
Rayleigh, Lord 1878 On the instability of jets. Proc. R. Soc. Lond. 10, 413.
Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. J. Sci. 34, 145154.
Rivero-Rodríguez, J. & Scheid, B. 2018 Bubble dynamics in microchannels: inertial and capillary migration forces. J. Fluid Mech. 842, 215247.
Roché, M., Aytouna, M., Bonn, D. & Kellay, H. 2009 Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys. Rev. Lett. 103 (26), 264501.
Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C. & Gordillo, J. M. 2015 Generation of microbubbles with applications to industry and medicine. Annu. Rev. Fluid Mech. 47, 405429.
Scheid, B., Delacotte, J., Dollet, B., Rio, E., Restagno, F., van Nierop, E. A., Cantat, I., Langevin, D. & Stone, H. A. 2010 The role of surface rheology on liquid film formation. Europhys. Lett. 90, 24002.
Scriven, L. E. 1960 Dynamics of a fluid interface. Equation of motion for Newtonian surface fluids. Chem. Engng Sci. 12 (2), 98108.
Scriven, L. E. & Sternling, C. V. 1960 The Marangoni effects. Nature 187, 186188.
Seiwert, J., Dollet, B. & Cantat, I. 2014 Theoretical study of the generation of soap films: role of interfacial visco-elasticity. J. Fluid Mech. 739, 124142.
Slattery, J. C., Sagis, L. & Oh, E. S. 2007 Interfacial Transport Phenomena. Springer.
Stone, HA 1990 A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Timmermans, M.-L. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.
Ting, L., Wasan, D. T., Miyano, K. & Xu, S. Q. 1984 Longitudinal surface waves for the study of dynamic properties of surfactant systems. Part II. Air–solution interface. J. Colloid Interface Sci. 102 (1), 248259.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. 150, 322337.
Tricot, Y. M. 1997 Surfactants: static and dynamic surface tension. In Liquid Film Coating: Scientific Principles and their Technological Implications (ed. Schweizer, P. M. & Kistler, S. F.), pp. 99136. Springer.
Valkovska, D. S. & Danov, K. D. 2000 Determination of bulk and surface diffusion coefficients from experimental data for thin liquid film drainage. J. Colloid Interface Sci. 223 (2), 314316.
Van Golde, L. M., Batenburg, J. J. & Robertson, B. 1988 The pulmonary surfactant system: biochemical aspects and functional significance. Phys. Rev. 68 (2), 374455.
Whitaker, S. 1976 Studies of the drop-weight method for surfactant solutions. Part III. Drop stability, the effect of surfactants on the stability of a column of liquid. J. Colloid Interface Sci. 54 (2), 231248.
Wong, H., Rumschitzki, D. & Maldarelli, C. 1996 On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8 (11), 32033204.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed