Skip to main content Accessibility help
×
Home

A tent model of vortex reconnection under Biot–Savart evolution

  • Yoshifumi Kimura (a1) and H. K. Moffatt (a2)

Abstract

Vortex reconnection under Biot–Savart evolution is investigated geometrically and numerically using a tent model consisting of vortex filaments initially in the form of two tilted hyperbolic branches; the vortices are antiparallel at their points of nearest approach. It is shown that the tips of these vortices approach each other, accelerating as they do so to form a finite-time singularity at the apex of the tent. The minimum separation of the vortices and the maximum velocity and axial strain rate exhibit nearly self-similar Leray scaling, but the exponents of the velocity and strain rate deviate slightly from their respective self-similar values of $-1/2$ and $-1$ ; this deviation is associated with the appearance of distinct minima of curvature leading to cusp structures at the tips. The writhe and twist of each vortex are both zero at all times up to the instant of reconnection. By way of validation of the model, the structure of the eigenvalues and eigenvectors of the rate-of-strain tensor is investigated: it is shown that the second eigenvalue $\unicode[STIX]{x1D706}_{2}$ has dipole structure around the vortex filaments. At the tips, it is observed that $\unicode[STIX]{x1D706}_{2}$ is positive and the corresponding eigenvector is tangent to the filament, implying persistent stretching of the vortex.

Copyright

Corresponding author

Email address for correspondence: hkm2@damtp.cam.ac.uk

References

Hide All
Bewley, G. P., Paoletti, M. S., Sreenivasan, K. P. & Lathrop, D. P. 2008 Characterization of reconnecting vortices in superfluid helium. Proc. Natl Acad. Sci. USA 105 (37), 1370713710.
Boué, L., Khomenko, D., L’vov, V. S. & Procaccia, I. 2013 Analytic solution of the approach of quantum reconnection. Phys. Rev. Lett. 111, 145301.
Brenner, M. P., Hormoz, S. & Pumir, A. 2016 Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids 1, 084503.
Fonda, E., Meichie, D. P., Ouellette, N., Hormoz, S. & Lathrop, D. P. 2014 Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl Acad. Sci. USA 111 (Supplement 1), 47074710.
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23, 021701.
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169189.
Kimura, Y. & Moffatt, H. K. 2014 Reconnection of skewed vortices. J. Fluid Mech. 751, 329345.
Kimura, Y. & Moffatt, H. K. 2017 [KM17] Scaling properties towards vortex reconnection under Biot–Savart evolution. Fluid Dyn. Res.; doi:10.1088/1873-7005/aa710c.
Kleckner, D. & Irvine, W. T. M. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9, 253258.
Leray, J. 1934 Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193248.
Moffatt, H. K. & Ricca, R. L. 1992 Helicity and the Călugăreanu invariant. Proc. R. Soc. Lond. A 439, 411429.
Moffatt, H. K., Kida, S. & Ohkitani, K. 1994 Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241264.
Rorai, C., Skipper, J., Kerr, R. M. & Sreenivasan, K. R. 2016 Approach and separation of quantized vortices with balanced cores. J. Fluid Mech. 808, 641667.
Serafini, S., Galantucci, L., Iseni, E., Bienaimé, T., Bisset, R. N., Barenghi, C. B., Dalfovo, F., Lamporesi, G. & Ferrari, G. 2017 Vortex reconnections and rebounds in trapped atomic Bose-Einstein condensates. Phys. Rev. X 7 (2), 021031.
Tebbs, R., Youd, A. J. & Barenghi, C. F. 2011 The approach to vortex reconnections. J. Low Temp. Phys. 162, 314321.
Villois, A., Proment, D. & Krstulovic, G. 2017 Universal and non-universal aspects of vortex reconnections in superfluids. Phys. Rev. Fluids 2, 044701.
de Waele, A. T. A. M. & Aarts, R. G. K. M. 1994 Route to vortex reconnection. Phys. Rev. Lett. 72, 482485.
Zuccher, S., Caliari, M., Baggaley, A. W. & Barenghi, C. F. 2012 Quantum vortex reconnections. Phys. Fluids 24, 125108.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Kimura et al. supplementary movie 1
Vortex evolution for the tent model; n=4096

 Video (6.1 MB)
6.1 MB
VIDEO
Movies

Kimura et al. supplementary movie 2
Tent model evolution of single vortex, n=4096

 Video (3.8 MB)
3.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed