Skip to main content

Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime

  • PAUL D. WILLIAMS (a1), PETER L. READ (a2) and THOMAS W. N. HAINE (a3)

We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.

Corresponding author
Email address for correspondence:
Hide All
Appleby, J. C. 1982 Comparative theoretical and experimental studies of baroclinic waves in a two-layer system. PhD thesis, University of Leeds.
Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119143.
Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures. J. Fluid Mech. 464, 165207.
Brugge, R., Nurser, A. J. G. & Marshall, J. C. 1987 A quasi-geostrophic ocean model: some introductory notes. Tech Rep. Blackett Laboratory, Imperial College.
Cattaneo, F. & Hart, J. E. 1990 Multiple states for quasi-geostrophic channel flows. Geophys. Astrophys. Fluid Dyn. 54, 133.
Charney, J. G., Fjørtoft, R. & von Neumann, J. 1950 Numerical integration of the barotropic vorticity equation. Tellus 2 (4), 237254.
Ekman, V. W. 1905 On the influence of the Earth's rotation on ocean currents. Ark. Math. Astr. Fys. 2, 152.
Flierl, G. R. 1977 Simple applications of McWilliams' ‘A note on a consistent quasigeostrophic model in a multiply connected domain’. Dyn. Atmos. Oceans 1, 443453.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Haltiner, G. J. & Williams, R. T. 1980 Numerical Prediction and Dynamic Meteorology, 2nd edn. Wiley.
Hart, J. E. 1972 A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3, 181209.
Hart, J. E. 1981 Wavenumber selection in nonlinear baroclinic instability. J. Atmos. Sci. 38 (2), 400408.
Hart, J. E. 1995 Nonlinear Ekman suction and ageostrophic effects in rapidly rotating flows. Geophys. Astrophys. Fluid Dyn. 79, 201222.
Hart, J. E. & Kittelman, S 1986 A method for measuring interfacial wave fields in the laboratory. Geophys. Astrophys. Fluid Dyn. 36, 179185.
Hignett, P., White, A. A., Carter, R. D. Jackson, W. D. N. & Small, R. M. 1985 A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus. Quart. J. R. Meteorol. Soc. 111, 131154.
King, J. C. 1979 Instabilities and nonlinear wave interactions in a two-layer rotating fluid. PhD thesis, University of Leeds.
Kwon, H. J. & Mak, M. 1988 On the equilibration in nonlinear barotropic instability. J. Atmos. Sci. 45 (2), 294308.
Lewis, S. R. 1992 A quasi-geostrophic numerical model of a rotating internally heated fluid. Geophys. Astrophys. Fluid Dyn. 65, 3155.
Lovegrove, A. F. 1997 Bifurcations and instabilities in rotating two-layer fluids. PhD thesis, Oxford University.
Lovegrove, A. F., Read, P. L. & Richards, C. J. 2000 Generation of inertia–gravity waves in a baroclinically unstable fluid. Quart. J. R. Meteorol. Soc. 126, 32333254.
McIntyre, M. E. 1967 Convection and baroclinic instability in rotating fluids. PhD thesis, Cambridge University.
McWilliams, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.
McWilliams, J. C. 2007 Irreducible imprecision in atmospheric and oceanic simulations. Proc. Natl Acad. Sci. 104 (21), 87098713.
Mesinger, F. & Arakawa, A. 1976 Numerical methods used in atmospheric models. Global Atmospheric Research Programme Publications Series No. 17. World Meteorological Organization, Geneva.
Mundt, M. D., Brummell, N. H. & Hart, J. E. 1995 a Linear and nonlinear baroclinic instability with rigid sidewalls. J. Fluid Mech. 291, 109138.
Mundt, M. D., Hart, J. E. & Ohlsen, D. R. 1995 b Symmetry, sidewalls, and the transition to chaos in baroclinic systems. J. Fluid Mech. 300, 311338.
Mundt, M. D., Vallis, G. K. & Wang, J. 1997 Balanced models and dynamics for the large- and mesoscale circulation. J. Phys. Oceanogr. 27 (6), 11331152.
Pedlosky, J. 1964 The stability of currents in the atmosphere and the ocean. Part I. J. Atmos. Sci. 21, 201219.
Pedlosky, J. 1970 Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 1530.
Pedlosky, J. 1971 Finite-amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28, 587597.
Pedlosky, J. 1972 Limit cycles and unstable baroclinic waves. J. Atmos. Sci. 29, 5363.
Pedlosky, J. 1981 The nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech. 102, 169209.
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.
Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 273286.
Phillips, N. A. 1956 The general circulation of the atmosphere: a numerical experiment. Quart. J. R. Meteorol. Soc. 82 (352), 123164.
Phillips, N. A. 1963 Geostrophic motion. Rev. Geophys. 1 (2), 123176.
Read, P. L. 2001 Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surv. Geophys. 22 (3), 265317.
Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Wordsworth, R., Miki-Yamazaki, K., Sommeria, J. & Didelle, H. 2007 Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64 (11), 40314052.
Robert, A. J. 1966 The integration of a low order spectral form of the primitive meteorological equations. J. Meteorol. Soc. Jpn 44 (5), 237245.
Smith, R. K. 1974 On limit cycles and vacillating baroclinic waves. J. Atmos. Sci. 31, 20082011.
Smith, R. K. 1977 On a theory of amplitude vacillation in baroclinic waves. J. Fluid Mech. 79 (2), 289306.
Smith, R. K. & Pedlosky, J. 1975 A note on a theory of vacillating baroclinic waves and Reply. J. Atmos. Sci. 32, 2027.
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 1726.
White, A. A. 1986 Documentation of the finite difference schemes used by the Met O 21 two-dimensional Navier–Stokes model. Tech Rep. Met O 21 IR86/3. Geophysical Fluid Dynamics Laboratory, UK Meteorological Office.
Williams, G. P. 1979 Planetary circulations. Part 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36, 932968.
Williams, P. D. 2003 Nonlinear interactions of fast and slow modes in rotating, stratified fluid flows. PhD thesis, Oxford University.
Williams, P. D., Haine, T. W. N. & Read, P. L. 2004 a Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia–gravity wave parameterization. Nonlin. Proc. Geophys. 11 (1), 127135.
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 122.
Williams, P. D., Haine, T. W. N. & Read, P. L. 2008 Inertia–gravity waves emitted from balanced flow: Observations, properties, and consequences. J. Atmos. Sci. 65 (11), 35433556.
Williams, P. D., Haine, T. W. N., Read, P. L., Lewis, S. R. & Yamazaki, Y. H. 2009 QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments. Geosci. Model Develop. 2 (1), 1332.
Williams, P. D., Read, P. L. & Haine, T. W. N. 2004 b A calibrated, non-invasive method for measuring the internal interface height field at high resolution in the rotating, two-layer annulus. Geophys. Astrophys. Fluid Dyn. 98 (6), 453471.
Zurita-Gotor, P. & Vallis, G. K. 2009 Equilibration of baroclinic turbulence in primitive equations and quasigeostrophic models. J. Atmos. Sci. 66, 837863.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 78 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.