Skip to main content

The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description

  • Ory Schnitzer (a1) and Ehud Yariv (a1)

While the Taylor–Melcher electrohydrodynamic model entails ionic charge carriers, it addresses neither ionic transport within the liquids nor the formation of diffuse space-charge layers about their common interface. Moreover, as this model is hinged upon the presence of non-zero interfacial-charge density, it appears to be in contradiction with the aggregate electro-neutrality implied by ionic screening. Following a brief synopsis published by Baygents & Saville (Third International Colloquium on Drops and Bubbles, AIP Conference Proceedings, vol. 7, 1989, American Institute of Physics, pp. 7–17) we systematically derive here the macroscale description appropriate for leaky dielectric liquids, starting from the primitive electrokinetic equations and addressing the double limit of thin space-charge layers and strong fields. This derivation is accomplished through the use of matched asymptotic expansions between the narrow space-charge layers adjacent to the interface and the electro-neutral bulk domains, which are homogenized by the strong ionic advection. Electrokinetic transport within the electrical ‘triple layer’ comprising the genuine interface and the adjacent space-charge layers is embodied in effective boundary conditions; these conditions, together with the simplified transport within the bulk domains, constitute the requisite macroscale description. This description essentially coincides with the familiar equations of Melcher & Taylor (Annu. Rev. Fluid Mech., vol. 1, 1969, pp. 111–146). A key quantity in our macroscale description is the ‘apparent’ surface-charge density, provided by the transversely integrated triple-layer microscale charge. At leading order, this density vanishes due to the expected Debye-layer screening; its asymptotic correction provides the ‘interfacial’ surface-charge density appearing in the Taylor–Melcher model. Our unified electrohydrodynamic treatment provides a reinterpretation of both the Taylor–Melcher conductivity-ratio parameter and the electrical Reynolds number. The latter, expressed in terms of fundamental electrokinetic properties, becomes $O(1)$ only for intense applied fields, comparable with the transverse field within the space-charge layers; at this limit the asymptotic scheme collapses. Surface-charge advection is accordingly absent in the macroscale description. Owing to the inevitable presence of (screened) net charge on the genuine interface, the drop also undergoes electrophoretic motion. The associated flow, however, is asymptotically smaller than that corresponding to the Taylor–Melcher circulation. Our successful matching procedure contrasts the analysis of Baygents & Saville, who considered more general electrolytes and were unable to directly match the inner and outer regions. We discuss this difference in detail.

Hide All
Acrivos, A. & Goddard, J. D. 1965 Asymptotic expansions for laminar forced-convection heat and mass transfer. Part 1. Low speed flows. J. Fluid Mech. 23 (02), 273291.
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 30, 139165.
Batchelor, G. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1 (2), 177190.
Baygents, J. C. & Saville, D. A. 1989 The circulation produced in a drop by an electric field: a high field strength electrokinetic model. In Drops & Bubbles, Third International Colloquium, Monterey 1988 (ed. Wang, T.), AIP Conference Proceedings, vol. 7, pp. 717. American Institute of Physics.
Baygents, J. C. & Saville, D. A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87 (12), 18831898.
Ben, Y., Demekhin, E. A. & Chang, H.-C. 2004 Nonlinear electrokinetics and ‘superfast’ electrophoresis. J. Colloid Interface Sci. 276, 483497.
Chu, K. T. & Bazant, M. Z. 2006 Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74 (1), 011501.
Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17 (3), 032104.
Derjaguin, B. V. & Dukhin, S. S. 1974 Nonequilibrium double layer and electrokinetic phenomena. In Electrokinetic Phenomena (ed. Matijevic, E.), Surface and Colloid Science, vol. 7, pp. 273336. John Wiley & Sons.
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.
Feng, J. Q. & Scott, T. C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.
Gambhire, P. & Thaokar, R. 2014 Electrokinetic model for electric-field-induced interfacial instabilities. Phys. Rev. E 89 (3), 032409.
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Mani, A. & Bazant, M. Z. 2011 Deionization shocks in microstructures. Phys. Rev. E 84 (6), 061504.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.
Monroe, C. W., Daikhin, L. I., Urbakh, M. & Kornyshev, A. A. 2006 Electrowetting with electrolytes. Phys. Rev. Lett. 97 (13), 136102.
Morrison, F. A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34, 210214.
O’Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92 (1), 204216.
Ohshima, H., Healy, T. W. & White, L. R. 1984 Electrokinetic phenomena in a dilute suspension of charged mercury drops. J. Chem. Soc. Faraday Trans. 80 (12), 16431667.
Rivette, N. J. & Baygents, J. C. 1996 A note on the electrostatic force and torque acting on an isolated body in an electric field. Chem. Engng Sci. 51 (23), 52055211.
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110.
Salipante, P. F. & Vlahovska, P. M. 2014 Vesicle deformation in DC electric pulses. Soft Matt. 10 (19), 33863393.
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.
Schnitzer, O., Frankel, I. & Yariv, E. 2014 Electrophoresis of bubbles. J. Fluid Mech. 753, 4979.
Schnitzer, O. & Yariv, E. 2012a Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys. Rev. E 86, 021503.
Schnitzer, O. & Yariv, E. 2012b Strong-field electrophoresis. J. Fluid Mech. 701, 333351.
Schnitzer, O. & Yariv, E. 2013 Nonlinear electrokinetic flow about a polarized conducting drop. Phys. Rev. E 87, 041002R.
Schnitzer, O., Zeyde, R., Yavneh, I. & Yariv, E. 2013 Nonlinear electrophoresis of a highly charged colloidal particle. Phys. Fluids 25, 052004.
Taylor, G. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291 (1425), 159166.
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drop. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.
Vizika, O. & Saville, D. A. 1992 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239 (1), 121.
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.
Yariv, E. 2009 An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena. Chem. Engng Commun. 197, 317.
Yariv, E. 2010 Migration of ion-exchange particles driven by a uniform electric field. J. Fluid Mech. 655, 105121.
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.
Zholkovskij, E. K., Masliyah, J. H. & Czarnecki, J. 2002 An electrokinetic model of drop deformation in an electric field. J. Fluid Mech. 472 (1), 127.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 4
Total number of PDF views: 212 *
Loading metrics...

Abstract views

Total abstract views: 565 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th August 2018. This data will be updated every 24 hours.