Skip to main content
×
Home
    • Aa
    • Aa

The two- and three-dimensional instabilities of a spatially periodic shear layer

  • R. T. Pierrehumbert (a1) (a2) and S. E. Widnall (a1)
Abstract

The two- and three-dimensional stability properties of the family of coherent shear-layer vortices discovered by Stuart are investigated. The stability problem is formulated as a non-separable eigenvalue problem in two independent variables, and solved numerically using spectral methods. It is found that there are two main classes of instabilities. The first class is subharmonic, and corresponds to pairing or localized pairing of vortex tubes; the pairing instability is most unstable in the two-dimensional limit, in which the perturbation has no spanwise variations. The second class repeats in the streamwise direction with the same periodicity as the basic flow. This mode is most unstable for spanwise wavelengths approximately 2/3 of the space between vortex centres, and can lead to the generation of streamwise vorticity and coherent ridges of upwelling. Comparison is made between the calculated instabilities and the observed pairing, helical pairing, and streak transitions. The theoretical and experimental results are found to be in reasonable agreement.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax