Skip to main content
×
×
Home

Theoretical perspective on the route to turbulence in a pipe

Abstract

The route to turbulence in pipe flow is a complex, nonlinear, spatiotemporal process for which an increasingly clear understanding has emerged in recent years. This paper presents a theoretical perspective on the problem, focusing on what can be understood from relatively few physical features and models that encompass these features. The paper proceeds step-by-step with increasing detail about the transition process, first discussing the relationship to phase transitions and then exploiting an even deeper connection between pipe flow and excitable and bistable media. In the end a picture emerges for all stages of the transition process, from transient turbulence, to the onset of sustained turbulence in a percolation transition, to the modest and then rapid expansion of turbulence, ultimately leading to fully turbulent pipe flow.

Copyright
Corresponding author
Email address for correspondence: D.Barkley@warwick.ac.uk
References
Hide All
Allhoff K. T. & Eckhardt B. 2012 Directed percolation model for turbulence transition in shear flows. Fluid Dyn. Res. 44 (3), 031201.
Avila K., Moxey D., de Lozar A., Avila M., Barkley D. & Hof B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.
Avila M., Willis A. P. & Hof B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.
Bandyopadhyay P. R. 1986 Aspects of the equilibrium puff in transitional pipe flow. J. Fluid Mech. 163, 439458.
Barkley D. 2011a Simplifying the complexity of pipe flow. Phys. Rev. E 84 (1), 016309.
Barkley D. 2011b Modeling the transition to turbulence in shear flows. J. Phys.: Conf. Ser. 318 (3), 032001.
Barkley D. 2012 Pipe flow as an excitable medium. Rev. Cub. Fis. 29, 1E27.
Barkley D., Song B., Mukund V., Lemoult G., Avila M. & Hof B. 2015 The rise of fully turbulent flow. Nature 526 (7574), 550553.
Barkley D. & Tuckerman L. S. 2007 Mean flow of turbulent–laminar patterns in plane Couette flow. J. Fluid Mech. 576, 109137.
Chantry M., Tuckerman L. S. & Barkley D. 2016 Turbulent–laminar patterns in shear flows without walls. J. Fluid Mech. 791, R8.
Chaté H. & Manneville P. 1987 Transition to turbulence via spatiotemporal intermittency. Phys. Rev. Lett. 58 (2), 112115.
Chomaz J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Chossat P. & Iooss G. 1985 Primary and secondary bifurcations in the Couette–Taylor problem. Japan J. Appl. Math. 2 (1), 3768.
Coles D. 1962 Interfaces and intermittency in turbulent shear flow. Méc. Turbul. 108 (108), 229250.
Darbyshire A. G. & Mullin T. 1995 Transition to turbulence in constant-mass-flux pipe-flow. J. Fluid Mech. 289, 83114.
Doering C. R. 1987 A stochastic partial differential equation with multiplicative noise. Phys. Lett. A 122 (3–4), 133139.
van Doorne C. W. & Westerweel J. 2009 The flow structure of a puff. Phil. Trans. R. Soc. Lond. A 367 (1888), 489507.
Duguet Y. & Schlatter P. 2013 Oblique laminar–turbulent interfaces in plane shear flows. Phys. Rev. Lett. 110 (3), 034502.
Duguet Y., Willis A. P & Kerswell R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.
Duguet Y., Willis A. P. & Kerswell R. R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.
Eckert M. 2010 The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem. Eur. Phys. J. H 35 (1), 2951.
Eckhardt B., Schneider T. M., Hof B. & Westerweel J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.
Faisst H. & Eckhardt B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.
Faisst H. & Eckhardt B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.
Feigenbaum M. J. 1978 Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1), 2552.
Flores G. 1991 Stability analysis for the slow travelling pulse of the Fitzhugh–Nagumo system. SIAM J. Math. Anal. 22 (2), 392399.
Goldenfeld N., Guttenberg N. & Gioia G. 2010 Extreme fluctuations and the finite lifetime of the turbulent state. Phys. Rev. E 81 (3), 035304.
Gollub J. P. & Swinney H. L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35 (14), 927.
Hinrichsen H. 2000 Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49 (7), 815958.
Hodgkin A. L. & Huxley A. F. 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117 (4), 500544.
Hof B., Juel A. & Mullin T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91 (24), 244502.
Hof B., de Lozar A., Avila M., Tu X. & Schneider T. M. 2010 Eliminating turbulence in spatially intermittent flows. Science 327 (5972), 14911494.
Hof B., Westerweel J., Schneider T. M. & Eckhardt B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.
Holzner M., Song B., Avila M. & Hof B. 2013 Lagrangian approach to laminar–turbulent interfaces in transitional pipe flow. J. Fluid Mech. 723, 140162.
Hopf E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1 (4), 303322.
Itano T. & Toh S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3), 703716.
Jalife J. 2000 Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Phys. Chem. 62 (1), 2550.
Joseph D. D. 1976 Stability of Fluid Motions I, Springer Tracts in Natural Philosophy, vol. 27. Springer.
Kaneko K. 1985 Spatiotemporal intermittency in coupled map lattices. Prog. Theor. Phys. 74 (5), 10331044.
Kawahara G., Uhlmann M. & van Veen L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.
Keener J. & Sneyd J. 2008 Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer.
Landau L. D. & Lifshitz E. M. 1959 Volume 6 of A Course of Theoretical Physics. Pergamon Press.
Landau L. D. 1944 On the problem of turbulence. Dokl. Akad. Nauk SSSR 44 (8), 339349.
Lemoult G., Gumowski K., Aider J.-L. & Wesfreid J. E. 2014 Turbulent spots in channel flow: an experimental study. Eur. Phys. J. E 37, 25.
Lemoult G., Shi L., Avila K., Jalikop S. V., Avila M. & Hof B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12 (3), 254258.
Lindgren E. R. 1957 The transition process and other phenomena in viscous flow. Ark. Fys. 12, 1169.
Lindgren E. R. 1969 Propagation velocity of turbulent slugs and streaks in transition pipe flow. Phys. Fluids 12 (2), 418425.
Manneville P. 2015 On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular. Eur. J. Mech. (B/Fluids) 49, 345362.
Manneville P. 2016 Transition to turbulence in wall-bounded flows: Where do we stand? Bull. JSME 3 (2), 1500684.
Marschler C. & Vollmer J. 2014 Unidirectionally coupled map lattices with nonlinear coupling: Unbinding transitions and superlong transients. SIAM J. Appl. Dyn. Syst. 13 (3), 11371151.
McKeon B. J., Swanson C J, Zagarola M. V., Donnelly R. J. & Smits A. J. 2004 Friction factors for smooth pipe flow. J. Fluid Mech. 511, 4144.
Mellibovsky F., Meseguer A., Schneider T. M. & Eckhardt B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103 (5), 054502.
Meseguer A. & Trefethen L. N. 2003 Linearized pipe flow to Reynolds number 107 . J. Comput. Phys. 186 (1), 178197.
Moxey D. & Barkley D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA 107 (18), 80918096.
Narasimha R. & Sreenivasan K. R. 1979 Relaminarization of fluid flows. Adv. Appl. Mech. 19, 221309.
Newell A. C. & Whitehead J. A. 1969 Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38 (02), 279303.
Nishi M., Ünsal B., Durst F. & Biswas G. 2008 Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech. 614, 425.
Orr W. M.’F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Irish Acad. A 27, 69138.
Peixinho J. & Mullin T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96 (9), 094501.
Pomeau Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23 (1–3), 311.
Pomeau Y. 2015 The transition to turbulence in parallel flows: a personal view. C. R. Méc. 343 (3), 210218.
Pope S. B 2000 Turbulent Flows. Cambridge University Press.
Reynolds O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 174, 935982.
Rinzel J. & Terman D. 1982 Propagation phenomena in a bistable reaction-diffusion system. SIAM J. Appl. Maths 42 (5), 11111137.
Rotta J. 1956 Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr. Ing-Arch. 24 (4), 258281.
Ruelle D. & Takens F. 1971 On the nature of turbulence. Commun. Math. Phys. 20 (3), 167192.
Salwen H., Cotton F. W. & Grosch C. E. 1980 Linear stability of poiseuille flow in a circular pipe. J. Fluid Mech. 98 (02), 273284.
Samanta D., De Lozar A. & Hof B. 2011 Experimental investigation of laminar turbulent intermittency in pipe flow. J. Fluid Mech. 681, 193204.
Schlichting H. 1968 Boundary-Layer Theory. McGraw-Hill.
Schneider T., Eckhardt B. & Yorke J. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.
Segel L. A. 1969 Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38 (01), 203224.
Shih H.-Y., Hsieh T.-L. & Goldenfeld N. 2016 Ecological collapse and the emergence of travelling waves at the onset of shear turbulence. Nat. Phys. 12, 245248.
Shimizu M. & Kida S. 2009 A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41 (4), 045501.
Shimizu M., Manneville P., Duguet Y. & Kawahara G. 2014 Splitting of a turbulent puff in pipe flow. Fluid Dyn. Res. 46 (6), 061403.
Sipos M. & Goldenfeld N. 2011 Directed percolation describes lifetime and growth of turbulent puffs and slugs. Phys. Rev. E 84 (3), 035304.
Song B., Barkley D., Avila M. & Hof B.2016 Speed and structure of turbulent fronts in pipe flow. arXiv:1603.04077.
Starmer C. F., Biktashev V. N., Romashko D. N., Stepanov M. R., Makarova O. N. & Krinsky V. I. 1993 Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation. Biophys. J. 65 (5), 1775.
Stuart J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4 (01), 121.
Swinney H. L. & Gollub J. P. 1985 Hydrodynamic Instabilities and the Transition to Turbulence, 2nd edn. Topics in Applied Physics, vol. 45. Springer.
Takeuchi K. A., Kuroda M., Chaté H. & Sano M. 2007 Directed percolation criticality in turbulent liquid crystals. Phys. Rev. Lett. 99 (23), 234503.
Takeuchi K. A., Kuroda M., Chaté H. & Sano M. 2009 Experimental realization of directed percolation criticality in turbulent liquid crystals. Phys. Rev. E 80 (5), 051116.
Taylor G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.
Tyson J. J. & Keener J. P. 1988 Singular perturbation-theory of traveling waves in excitable media. Physica D 32 (3), 327361.
Vollmer J., Schneider T. M & Eckhardt B. 2009 Basin boundary, edge of chaos and edge state in a two-dimensional model. New J. Phys. 11, 013040.
Waleffe F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.
Wedin H. & Kerswell R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Willis A. P. & Kerswell R. R. 2007 Critical behavior in the relaminarization of localized turbulence in pipe flow. Phys. Rev. Lett. 98 (1), 014501.
Winfree A. T. 1991 Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media. Chaos: An Interdisciplinary J. Nonlinear Sci. 1 (3), 303334.
Wygnanski I. & Champagne H. 1973 Transition in a pipe. Part 1. The origin of puffs and slugs and flow in a turbulent slug. J. Fluid Mech. 59, 281335.
Wygnanski I., Sokolov M. & Friedman D. 1975 Transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283304.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 171
Total number of PDF views: 2680 *
Loading metrics...

Abstract views

Total abstract views: 5009 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.