Hostname: page-component-68c7f8b79f-xc2tv Total loading time: 0 Render date: 2025-12-18T17:04:28.907Z Has data issue: false hasContentIssue false

Thermocapillary convection flows near a suddenly heated vertical wire

Published online by Cambridge University Press:  12 December 2025

Xinyuan Meng
Affiliation:
School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
Enhui Chen*
Affiliation:
School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
Feng Xu*
Affiliation:
School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, PR China
*
Corresponding authors: Feng Xu, fxu@bjtu.edu.cn; Enhui Chen, ehchen@bjtu.edu.cn
Corresponding authors: Feng Xu, fxu@bjtu.edu.cn; Enhui Chen, ehchen@bjtu.edu.cn

Abstract

Transient thermocapillary convection flows near a suddenly heated vertical wire are widely present in nature and industrial systems. The current study investigates the dynamical evolution and heat transfer for these transient flows near a suddenly heated vertical wire, employing scaling analysis and axisymmetric numerical simulation methodologies. Scaling analysis indicates that there exist four possible scenarios of the dynamical evolution and heat transfer for these transient flows, dependent on the wire curvature, Marangoni number and Prandtl number. In a typical scenario of the dynamical evolution and heat transfer, heat is first conducted into the fluid after sudden heating, resulting in an annular vertical thermal boundary layer around the wire. The radial temperature gradient may generate a thermocapillary force on the liquid surface, dragging the liquid away from the wire. The pressure gradient also drives a vertical flow along the wire. Further, the current study analyses and derives the scaling laws of the velocity, thickness and Nusselt number for the surface and vertical flows in different scenarios. Additionally, a number of two-dimensional axisymmetric numerical simulations are performed. The flow structure around the suddenly heated vertical wire is characterised under different regimes and the validation for the proposed scaling laws in comparison with numerical results is presented.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aigouy, L., Lalouat, L., Mortier, M., Löw, P. & Bergaud, C. 2011 Note: a scanning thermal probe microscope that operates in liquids. Rev. Sci. Instrum. 82, 036106.10.1063/1.3567794CrossRefGoogle ScholarPubMed
Adami, N. 2014 Surface tension and buoyancy in vertical soap films PhD thesis. Université de Liège.10.1103/PhysRevE.91.013007CrossRefGoogle Scholar
Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.10.1017/CBO9780511800955CrossRefGoogle Scholar
Bottemanne, F.A. 1972 Experimental results of pure and simultaneous heat and mass transfer by free convection about a vertical cylinder for Pr = 0.71 and Sc = 0.63. Appl. Sci. Res. 25, 372382.10.1007/BF00382310CrossRefGoogle Scholar
Cebeci, T., Wogulis, E.R. & Partin, R.D. 1968 Effect of transverse curvature on skin friction and heat transfer in laminar flows past slender circular cylinders. J. Heat Transfer 90, 485487.10.1115/1.3597548CrossRefGoogle Scholar
Chen, E. & Xu, F. 2021 Transient Marangoni convection induced by an isothermal sidewall of a rectangular liquid pool. J. Fluid Mech. 928, A6.10.1017/jfm.2021.795CrossRefGoogle Scholar
Chen, E. & Xu, F. 2021 Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall. Phys. Fluids 33, 013602.10.1063/5.0034650CrossRefGoogle Scholar
Chen, E. & Xu, F. 2023 Thermocapillary convective flow induced by a ramp heating wall. Int. J. Heat Mass Transfer 217, 124689.10.1016/j.ijheatmasstransfer.2023.124689CrossRefGoogle Scholar
Cowley, S.J. & Davis, S.H. 1983 Viscous thermocapillary convection at high Marangoni number. J. Fluid Mech. 135, 175188.10.1017/S002211208300302XCrossRefGoogle Scholar
Deng, T.-C. & Bergen, T.L. 1988 Accuracy of position estimation by centroid. Proc. SPIE 848, 141150.10.1117/12.942730CrossRefGoogle Scholar
Goodrich, S.S. & Marcum, W.R. 2019 Natural convection heat transfer and boundary layer transition for vertical heated cylinders. Exp. Therm. Fluid Sci. 105, 367380.10.1016/j.expthermflusci.2019.04.010CrossRefGoogle Scholar
Hou, K., Guan, D., Li, H., Sun, Y., Long, Y. & Song, K. 2021 Programmable light-driven swimming actuators via wavelength signal switching. Sci. Adv. 7, eabh3051.10.1126/sciadv.abh3051CrossRefGoogle ScholarPubMed
Imaishi, N., Ermakov, M.K. & Shi, W.Y. 2020 Effects of Pr and pool curvature on thermocapillary flow instabilities in annular pool. Int. J. Heat Mass Transfer 149, 119103.10.1016/j.ijheatmasstransfer.2019.119103CrossRefGoogle Scholar
Kamotani, Y., Chang, A. & Ostrach, S. 1996 Effects of heating mode on steady axisymmetric thermocapillary flows in microgravity. J. Heat Transfer 118, 191197.10.1115/1.2824034CrossRefGoogle Scholar
Kamotani, Y. & Ostrach, S. 1998 Theoretical analysis of thermocapillary flow in cylindrical columns of high Prandtl number fluids. J. Heat Transfer 120, 758764.10.1115/1.2824346CrossRefGoogle Scholar
Kamotani, Y., Ostrach, S. & Masud, J. 1999 Oscillatory thermocapillary flows in open cylindrical containers induced by CO2 laser heating. Int. J. Heat Mass Transfer 42, 555564.10.1016/S0017-9310(98)00163-XCrossRefGoogle Scholar
Kamotani, Y., Ostrach, S. & Masud, J. 2000 Microgravity experiments and analysis of oscillatory thermocapillary flows in cylindrical containers. J. Fluid Mech. 410, 211233.10.1017/S0022112099007892CrossRefGoogle Scholar
Kang, G.-U., Chung, B.-J. & Kim, H.-J. 2014 Natural convection heat transfer on a vertical cylinder submerged in fluids having high Prandtl number. Int. J. Heat Mass Transfer 79, 411.10.1016/j.ijheatmasstransfer.2014.07.077CrossRefGoogle Scholar
Kang, Q., Wu, D., Duan, L., He, J., Hu, L., Duan, L. & Hu, W. 2019 Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Phys. Fluids 31, 044105.10.1063/1.5090466CrossRefGoogle Scholar
Khan, A. & Bera, P. 2020 Linear instability of concentric annular flow: effect of Prandtl number and gap between cylinders. Int. J. Heat Mass Transfer 152, 119530.10.1016/j.ijheatmasstransfer.2020.119530CrossRefGoogle Scholar
Khouaja, H., Chen, T.S. & Armaly, B.F. 1991 Mixed convection along slender vertical cylinders with variable surface heat flux. Int. J. Heat Mass Transfer 34, 315319.10.1016/0017-9310(91)90197-MCrossRefGoogle Scholar
Li, Y.-R., Zhang, S. & Zhang, L. 2019 Thermocapillary convection of moderate Prandtl number fluid in a shallow annular pool heated from inner cylinder with surface heat dissipation. Int. J. Therm. Sci. 145, 105983.10.1016/j.ijthermalsci.2019.105983CrossRefGoogle Scholar
Liu, X., Dong, Q., Wang, P. & Chen, H. 2021 Review of electron beam welding technology in space environment. Optik 225, 165720.10.1016/j.ijleo.2020.165720CrossRefGoogle Scholar
Liu, Y. & Liu, C. 2022 Unified scale laws for transient convective boundary layers: from flat to curved boundary layers. Phys. Rev. Fluids 7, 054101.10.1103/PhysRevFluids.7.054101CrossRefGoogle Scholar
Meng, X., Chen, E. & Xu, F. 2024 Transient thermocapillary convection under a surface of a linear temperature distribution. Phys. Fluids 36, 023611.10.1063/5.0187608CrossRefGoogle Scholar
Meng, X., Chen, E. & Xu, F. 2024 Thermocapillary convection in a cuboid pool with a sidewall of different temperature sections. Int. Commun. Heat Mass Transfer 155, 107549.10.1016/j.icheatmasstransfer.2024.107549CrossRefGoogle Scholar
Mo, D.-M., Zhang, L., Ruan, D.-F. & Li, Y.-R. 2021 Aspect ratio dependence of thermocapillary flow instability of moderate-Prandtl number fluid in annular pools heated from inner cylinder. Microgravity Sci. Technol. 33, 66.10.1007/s12217-021-09909-0CrossRefGoogle Scholar
Nie, B. & Xu, F. 2022 Effect of curvature on transient natural convection in a vertical circular pipe. J. Fluid Mech. 937, A29.10.1017/jfm.2022.134CrossRefGoogle Scholar
Patterson, J. & Imberger, J. 1980 Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 100, 6586.10.1017/S0022112080001012CrossRefGoogle Scholar
Peng, L., Li, Y.-R., Shi, W.-Y. & Imaishi, N. 2007 Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. Int. J. Heat Mass Transfer 50, 872880.10.1016/j.ijheatmasstransfer.2006.08.015CrossRefGoogle Scholar
Piñan Basualdo, F.N., Bolopion, A., Gauthier, M. & Lambert, P. 2021 A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface. Sci. Robot. 6, 3557.10.1126/scirobotics.abd3557CrossRefGoogle ScholarPubMed
Popiel, C.O., Wojtkowiak, J. & Bober, K. 2007 Laminar free convective heat transfer from isothermal vertical slender cylinder. Exp. Therm. Fluid Sci. 32, 607613.10.1016/j.expthermflusci.2007.07.003CrossRefGoogle Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.10.1146/annurev-fluid-122316-045034CrossRefGoogle Scholar
Seidgazov, R.D. 2009 Thermocapillary mechanism of melt displacement during keyhole formation by the laser beam. J. Phys. D: Appl. Phys. 42, 175501.10.1088/0022-3727/42/17/175501CrossRefGoogle Scholar
Sen, A.K. & Davis, S.H. 1982 Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163186.10.1017/S0022112082001840CrossRefGoogle Scholar
Sparrow, E.M. & Gregg, J.L. 1956 Laminar-free-convection heat transfer from the outer surface of a vertical circular cylinder. Trans. ASME. 78, 18231828.Google Scholar
Touloukian, Y.S., Hawkins, G.A. & Jakob, M. 1948 Heat transfer by free convection from heated vertical surfaces to liquids. Trans. ASME. 70, 1317.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Villers, D. & Platten, J. 1992 Coupled buoyancy and Marangoni convection in acetone: experiments and comparison with numerical simulations. J. Fluid Mech. 234, 487510.10.1017/S0022112092000880CrossRefGoogle Scholar
Vogt, G.L. & Wargo, M.J. 1995 Microgravity: A Teacher’s Guide with Activities for Physical Science. NASA Headquarters, NASA EG-103.Google Scholar
Wei, S., Wang, G., Shin, Y.C. & Rong, Y. 2018 Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int. J. Heat Mass Transfer 125, 13561368.10.1016/j.ijheatmasstransfer.2018.04.164CrossRefGoogle Scholar
Xu, J., Zou, P., Liu, L., Wang, W. & Kang, D. 2022 Investigation on the mechanism of a new laser surface structuring by laser remelting. Surf. Coat. Technol. 443, 128615.10.1016/j.surfcoat.2022.128615CrossRefGoogle Scholar
Xue, J., Zhao, R., Zhang, D. & Cheng, R. 2023 Numerical optimization of forced thermal convection in transverse tube bundles based on double-distribution-function lattice Boltzmann method. Case Stud. Therm. Engng. 51, 103604.10.1016/j.csite.2023.103604CrossRefGoogle Scholar
Zeng, Z., Mizuseki, H., Simamura, K., Fukuda, T., Higashino, K. & Kawazoe, Y. 2001 Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity. Int. J. Heat Mass Transfer 44, 37653774.10.1016/S0017-9310(01)00012-6CrossRefGoogle Scholar
Zhang, W. 2025 Dynamics and heat and mass transfer of natural convection on top-open and vertical cylinders PhD thesis. Beijing Jiaotong University.Google Scholar
Zhao, Y., Lei, C. & Patterson, J.C. 2021 Magnified heat transfer from curved surfaces: a scaling prediction. Phys. Fluids 33, 021702.10.1063/5.0039974CrossRefGoogle Scholar
Zhou, B., Duan, L., Hu, L. & Kang, Q. 2008 Buoyant-thermocapillary convection under short period of microgravity. J. Exp. Fluid Mech. 22, 7983.Google Scholar