Skip to main content
×
Home
    • Aa
    • Aa

Thermophoresis of particles in a heated boundary layer

  • L. Talbot (a1), R. K. Cheng (a2), R. W. Schefer (a2) and D. R. Willis (a3)
Abstract

A laser-Doppler velocimeter (LDV) study of velocity profiles in the laminar boundary layer adjacent to a heated flat plate revealed that the seed particles used for the LDV measurements were driven away from the plate surface by thermophoretic forces, causing a particle-free region within the boundary layer of approximately one half the boundary-layer thickness. Measurements of the thickness of this region were compared with particle trajectories calculated according to several theories for the thermophoretic force. It was found that the theory of Brock, with an improved value for the thermal slip coefficient, gave the best agreement with experiment for low Knudsen numbers, λ/R = O(10−1), where λ is the mean free path and R the particle radius.

Data obtained by other experimenters over a wider range of Knudsen numbers are compared, and a fitting formula for the thermophoretic force useful over the entire range 0 [les ] λ/R [les ] ∞ is proposed which agrees within 20% or less with the majority of the available data.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 179 *
Loading metrics...

Abstract views

Total abstract views: 612 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.