Skip to main content
    • Aa
    • Aa

Three-dimensional knot convection in a layer heated from below

  • R. M. Clever (a1) and F. H. Busse (a2)

Steady three-dimensional convection flows induced by the knot instability of two-dimensional convection rolls are studied numerically for various Prandtl numbers. The Galerkin method is used to obtain the three-dimensional solutions of the basic equations in the case of rigid, infinitely conducting boundaries. These solutions exhibit the typical knot-like structure superimposed onto the basic rolls. The Nusselt number and kinetic energy of motion do not differ much for two- and three-dimensional solutions and the toroidal part of the kinetic energy associated with vertical vorticity always remains a small fraction of the total in the case of the knot solution. The analysis of the steady solutions is complemented by a stability analysis with respect to disturbances that fit the same horizontal periodicity interval as the knot solution. All instabilities correspond to Hopf bifurcations. Some example of finite-amplitude oscillatory knot convection are presented.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 35 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2017. This data will be updated every 24 hours.