Skip to main content
    • Aa
    • Aa

Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override

  • A. RIAZ (a1) and E. MEIBURG (a1)

High-accuracy three-dimensional numerical simulations of miscible displacements with gravity override in homogeneous porous media are carried out for the quarter five-spot configuration. Special emphasis is placed on describing the influence of viscous and gravitational effects on the overall displacement dynamics in terms of the vorticity variable. Even for neutrally buoyant displacements, three-dimensional effects are seen to change the character of the flow significantly, in contrast to earlier findings for rectilinear displacements. At least in part this can be attributed to the time dependence of the most dangerous vertical instability mode. Density differences influence the flow primarily by establishing a narrow gravity layer, in which the effective Péclet number is enhanced owing to the higher flow rate. However, buoyancy forces of a certain magnitude can lead to a pinch-off of the gravity layer, thereby slowing it down. Overall, an increase of the gravitational parameter is found to enhance mostly the vertical perturbations, while larger ${\hbox{\it Pe}}$ values act towards amplifying horizontal disturbances. The asymptotic rate of growth of the mixing length varies only with Péclet number. For large Péclet numbers, an asymptotic value of 0.7 is observed. A scaling law for the thickness of the gravity layer is obtained as well. In contrast to immiscible flow displacements, it is found to increase with the gravity parameter.

Corresponding author
Author to whom correspondence should be addressed.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 87 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.