Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-20T09:11:06.392Z Has data issue: false hasContentIssue false

Three-dimensional simulation of film boiling on a horizontal surface with magnetic field

Published online by Cambridge University Press:  18 November 2024

Hao-Tao Gu
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
Kirti Chandra Sahu
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502 284, Telangana, India
Jie Zhang*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
Ming-Jiu Ni
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Email address for correspondence: j_zhang@xjtu.edu.cn

Abstract

This study conducts a numerical investigation into the three-dimensional film boiling of liquid under the influence of external magnetic fields. The numerical method incorporates a sharp phase-change model based on the volume-of-fluid approach to track the liquid–vapour interface. Additionally, a consistent and conservative scheme is employed to calculate the induced current densities and electromagnetic forces. We investigate the magnetohydrodynamic effects on film boiling, particularly examining the pattern transition of the vapour bubble and the evolution of heat transfer characteristics, exposed to either a vertical or horizontal magnetic field. In single-mode scenarios, film boiling under a vertical magnetic field displays an isotropic flow structure, forming a columnar vapour jet at higher magnetic field intensities. In contrast, horizontal magnetic fields result in anisotropic flow, creating a two-dimensional vapour sheet as the magnetic strength increases. In multi-mode scenarios, the patterns observed in single-mode film boiling persist, with the interaction of vapour bubbles introducing additional complexity to the magnetohydrodynamic flow. More importantly, our comprehensive analysis reveals how and why distinct boiling effects are generated by various orientations of magnetic fields, which induce directional electromagnetic forces to suppress flow vortices within the cross-sectional plane.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdollahi, A., Salimpour, M.R. & Etesami, N. 2017 Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl. Therm. Engng 111, 11011110.CrossRefGoogle Scholar
Agarwal, D.K., Welch, S.W.J., Biswas, G. & Durst, F. 2004 Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method. Trans. ASME J. Heat Transfer 126 (3), 329338.CrossRefGoogle Scholar
Akhtar, M.W. 2018 Multi-modal film boiling simulations on adaptive octree grids. Intl J. Mech. Engng 12 (6), 655659.Google Scholar
Akhtar, M.W. & Kleis, S.J. 2013 Boiling flow simulations on adaptive octree grids. Intl J. Multiphase Flow 53, 8899.CrossRefGoogle Scholar
Aminfar, H., Mohammadpourfard, M. & Maroofiazar, R. 2014 Numerical study of non-uniform magnetic fields effects on subcooled nanofluid flow boiling. Prog. Nucl. Energy 74, 232241.CrossRefGoogle Scholar
Aminfar, H., Mohammadpourfard, M. & Sahraro, M. 2012 Numerical simulation of nucleate pool boiling on the horizontal surface for nano-fluid using wall heat flux partitioning method. Comput. Fluids 66, 2938.CrossRefGoogle Scholar
Arias, F.J. 2010 a Film boiling in magnetic field in liquid metals with particular reference to fusion reactor project. J. Fusion Energy 29, 130133.CrossRefGoogle Scholar
Arias, F.J. 2010 b Film boiling in presence of a magnetic field in liquid metals within framework of Taylor–Helmholtz instabilities in application to fusion reactor project. J. Fusion Energy 29, 157160.CrossRefGoogle Scholar
Arias, F.J. 2010 c Heat and mass transfer in transitional boiling on liquid metal in presence of a magnetic field. J. Fusion Energy 29, 244250.CrossRefGoogle Scholar
Bell, J.B., Colella, P. & Glaz, H.M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85 (2), 257283.CrossRefGoogle Scholar
Berenson, P.J. 1961 Film-boiling heat transfer from a horizontal surface. Trans. ASME J. Heat Transfer 83, 351358.CrossRefGoogle Scholar
de Bertodano, M.A.L., Leonardi, S. & Lykoudis, P.S. 1998 Nucleate pool boiling of mercury in the presence of a magnetic field. Intl J. Heat Mass Transfer 41 (22), 34913500.CrossRefGoogle Scholar
Burr, U. & Müller, U. 2002 Rayleigh–Bénard convection in liquid metal layers under the influence of a horizontal magnetic field. J. Fluid Mech. 453, 345369.CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Chang, Y.P. 1957 A theoretical analysis of heat transfer in natural convection and in boiling. Trans. Am. Soc. Mech. Engng 79 (7), 15011509.CrossRefGoogle Scholar
Chang, Y.P. 1959 Wave theory of heat transfer in film boiling. Trans. ASME J. Heat Transfer 81 (1), 18.CrossRefGoogle Scholar
Chen, X.Y., Yang, J.C. & Ni, M.J. 2024 Flow mode and global transport of liquid metal thermal convection in a cavity with $\gamma = 1/3$. Phys. Rev. Fluids 9 (2), 023503.CrossRefGoogle Scholar
Davidson, P.A. 1995 Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153186.CrossRefGoogle Scholar
Dhir, V.K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30 (1), 365401.CrossRefGoogle Scholar
Esmaeeli, A. & Tryggvason, G. 2004 a Computations of film boiling. Part I. Numerical method. Intl J. Heat Mass Transfer 47 (25), 54515461.CrossRefGoogle Scholar
Esmaeeli, A. & Tryggvason, G. 2004 b Computations of film boiling. Part II. Multi-mode film boiling. Intl J. Heat Mass Transfer 47 (25), 54635476.CrossRefGoogle Scholar
Faber, O.C. Jr. & Hsu, Y.Y. 1967 The effect of a vertical magnetic induction on the nucleate boiling of mercury over a horizontal surface (vertical magnetic induction effect on nucleate boiling of mercury on horizontal heating surface). In Chem. Eng. Prog. Symp. Ser., pp. 33–42.Google Scholar
Fraas, A.P., Lloyd, D.B. & MacPherson, R.E. 1974 Effects of a strong magnetic field on boiling of potassium. Tech. Rep. Oak Ridge National Lab.CrossRefGoogle Scholar
Gibou, F., Chen, L., Nguyen, D. & Banerjee, S. 2007 A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 222 (2), 536555.CrossRefGoogle Scholar
Guion, A., Afkhami, S., Zaleski, S. & Buongiorno, J. 2018 Simulations of microlayer formation in nucleate boiling. Intl J. Heat Mass Transfer 127, 12711284.CrossRefGoogle Scholar
Guo, D.Z., Sun, D.L., Li, Z.Y. & Tao, W.Q. 2011 Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method. Numer. Heat Transfer A 59 (11), 857881.CrossRefGoogle Scholar
Guo, K., Li, H., Feng, Y., Wang, T. & Zhao, J. 2019 Numerical simulation of magnetic nanofluid (MNF) film boiling using the VOSET method in presence of a uniform magnetic field. Intl J. Heat Mass Transfer 134, 1729.CrossRefGoogle Scholar
Hagerty, W.W. & Shea, J.F. 1955 A study of the stability of plane fluid sheets. J. Appl. Mech. 22 (4), 509514.CrossRefGoogle Scholar
Hens, A., Biswas, G. & De, S. 2014 Analysis of interfacial instability and multimode bubble formation in saturated boiling using coupled level set and volume-of-fluid approach. Phys. Fluids 26 (1), 012105.CrossRefGoogle Scholar
Innocenti, A., Jaccod, A., Popinet, S. & Chibbaro, S. 2021 Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918, A23.CrossRefGoogle Scholar
Juric, D. & Tryggvason, G. 1998 Computations of boiling flows. Intl J. Multiphase Flow 24 (3), 387410.CrossRefGoogle Scholar
Khorram, A. & Mortazavi, S. 2022 Direct numerical simulation of film boiling on a horizontal periodic surface in three dimensions using front tracking. Phys. Fluids 34 (5), 052117.CrossRefGoogle Scholar
Kim, B.J., Lee, J.H. & Kim, K.D. 2015 Rayleigh–Taylor instability for thin viscous gas films: application to critical heat flux and minimum film boiling. Intl J. Heat Mass Transfer 80, 150158.CrossRefGoogle Scholar
Klimenko, V.V. 1981 Film boiling on a horizontal plate—new correlation. Intl J. Heat Mass Transfer 24 (1), 6979.CrossRefGoogle Scholar
Klimenko, V.V. & Shelepen, A.G. 1982 Film boiling on a horizontal plate—a supplementary communication. Intl J. Heat Mass Transfer 25 (10), 16111613.CrossRefGoogle Scholar
Kumar, R. & Premachandran, B. 2022 A coupled level set and volume of fluid method for three dimensional unstructured polyhedral meshes for boiling flows. Intl J. Multiphase Flow 156, 104207.CrossRefGoogle Scholar
Lavino, A.D., Smith, E., Magnini, M. & Matar, O.K. 2021 Surface topography effects on pool boiling via non-equilibrium molecular dynamics simulations. Langmuir 37 (18), 57315744.CrossRefGoogle ScholarPubMed
Lee, J.H., Lee, T. & Jeong, Y.H. 2012 Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids. Intl J. Heat Mass Transfer 55 (9–10), 26562663.CrossRefGoogle Scholar
Lin, S.P. & Reitz, R.D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30 (1), 85105.CrossRefGoogle Scholar
Malvandi, A. 2016 Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field. J. Magn. Magn. Mater. 406, 95102.CrossRefGoogle Scholar
Mortazavi, S. 2022 Toward the ultimate goal on simulating multi-phase flows, simulation of film boiling at high-density ratios. Trans. ASME J. Heat Transfer 144 (8), 084501.CrossRefGoogle Scholar
Ningegowda, B.M. & Premachandran, B. 2019 Saturated film boiling of water over a finite size heater. Intl J. Therm. Sci. 135, 417433.CrossRefGoogle Scholar
Ogata, J. & Yabe, A. 1993 Basic study on the enhancement of nucleate boiling heat transfer by applying electric fields. Intl J. Heat Mass Transfer 36 (3), 775782.CrossRefGoogle Scholar
Pandey, V., Biswas, G. & Dalal, A. 2016 Effect of superheat and electric field on saturated film boiling. Phys. Fluids 28 (5), 052102.CrossRefGoogle Scholar
Pandey, V., Biswas, G. & Dalal, A. 2017 Saturated film boiling at various gravity levels under the influence of electrohydrodynamic forces. Phys. Fluids 29 (3), 032104.CrossRefGoogle Scholar
Pandey, V., Dalal, A. & Biswas, G. 2015 Bubble formation in film boiling including electrohydrodynamic forces. Procedia IUTAM 15, 8694.CrossRefGoogle Scholar
Patel, V.K. & Seyed-Yagoobi, J. 2017 Combined dielectrophoretic and electrohydrodynamic conduction pumping for enhancement of liquid film flow boiling. Trans. ASME J. Heat Transfer 139 (6), 061502.CrossRefGoogle Scholar
Patel, V.K, Seyed-Yagoobi, J., Sinha-Ray, S., Sinha-Ray, S. & Yarin, A. 2016 Electrohydrodynamic conduction pumping-driven liquid film flow boiling on bare and nanofiber-enhanced surfaces. Trans. ASME J. Heat Transfer 138 (4), 041501.CrossRefGoogle Scholar
Pearson, M.R. & Seyed-Yagoobi, J. 2013 EHD conduction-driven enhancement of critical heat flux in pool boiling. IEEE Trans. Ind. Appl. 49 (4), 18081816.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.CrossRefGoogle Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.CrossRefGoogle Scholar
Rouzbahani, M. & Mortazavi, S. 2023 Numerical simulation of film boiling heat transfer in the presence of a uniform electric field using front tracking. Intl J. Multiphase Flow 161, 104386.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31 (1), 567603.CrossRefGoogle Scholar
Shin, S. & Juric, D. 2002 Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J. Comput. Phys. 180 (2), 427470.CrossRefGoogle Scholar
Shojaeian, M., Yildizhan, M.M., Coşkun, Ö., Ozkalay, E., Tekşen, Y., Gulgun, M.A., Acar, H.F.Y. & Koşar, A. 2016 Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation. Mater. Res. Express 3 (9), 096102.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Son, G. & Dhir, V.K. 1997 Numerical simulation of saturated film boiling on a horizontal surface. Trans. ASME J. Heat Transfer 119 (3), 525533.CrossRefGoogle Scholar
Takahashi, M., Inoue, A. & Kaneko, T. 1994 Pool boiling heat transfer of mercury in the presence of a strong magnetic field. Exp. Therm. Fluid Sci. 8 (1), 6778.CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. A 201 (1065), 192196.Google Scholar
Tomar, G., Biswas, G., Sharma, A. & Welch, S.W.J. 2008 Multimode analysis of bubble growth in saturated film boiling. Phys. Fluids 20 (9), 092101.CrossRefGoogle Scholar
Tomar, G., Biswas, G., Sharma, A. & Welch, S.W.J. 2009 Influence of electric field on saturated film boiling. Phys. Fluids 21 (3), 032107.CrossRefGoogle Scholar
Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., Welch, S.W.J. & Delgado, A. 2007 Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys. 227 (2), 12671285.CrossRefGoogle Scholar
Tsui, Y.Y. & Lin, S.W. 2016 Three-dimensional modeling of fluid dynamics and heat transfer for two-fluid or phase change flows. Intl J. Heat Mass Transfer 93, 337348.CrossRefGoogle Scholar
Vogt, T., Ishimi, W., Yanagisawa, T., Tasaka, Y., Sakuraba, A. & Eckert, S. 2018 Transition between quasi-two-dimensional and three-dimensional Rayleigh–Bénard convection in a horizontal magnetic field. Phys. Rev. Fluids 3 (1), 013503.CrossRefGoogle Scholar
Wagner, L.Y. & Lykoudis, P.S. 1981 Mercury pool boiling under the influence of a horizontal magnetic field. Intl J. Heat Mass Transfer 24 (4), 635643.CrossRefGoogle Scholar
Wang, P., Lewin, P.L., Swaffield, D.J. & Chen, G. 2009 Electric field effects on boiling heat transfer of liquid nitrogen. Cryogenics 49 (8), 379389.CrossRefGoogle Scholar
Wang, Q., Pérez, A.T., Huang, J.Y., Guan, Y. & Wu, J. 2023 Numerical analysis on transition sequence and heat transfer capacity of film boiling with a uniform electric field. Phys. Fluids 35 (5), 053309.Google Scholar
Weymouth, G.D. & Yue, D.K.P. 2010 Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229 (8), 28532865.CrossRefGoogle Scholar
Zhang, J. & Ni, M. 2014 a A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured cartesian adaptive system. J. Comput. Phys. 256, 520542.CrossRefGoogle Scholar
Zhang, J. & Ni, M.J. 2014 b Direct simulation of single bubble motion under vertical magnetic field: paths and wakes. Phys. Fluids 26 (10), 102102.CrossRefGoogle Scholar
Zhang, J. & Ni, M.J. 2018 Direct numerical simulations of incompressible multiphase magnetohydrodynamics with phase change. J. Comput. Phys. 375, 717746.CrossRefGoogle Scholar
Zhao, S., Zhang, J. & Ni, M.J. 2022 Boiling and evaporation model for liquid–gas flows: a sharp and conservative method based on the geometrical VOF approach. J. Comput. Phys. 452, 110908.CrossRefGoogle Scholar
Zonouzi, S.A., Aminfar, H. & Mohammadpourfard, M. 2019 A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl. Therm. Engng 151, 1125.CrossRefGoogle Scholar
Zuber, N. 1958 On the stability of boiling heat transfer. Trans. Am. Soc. Mech. Engng 80 (3), 711714.CrossRefGoogle Scholar