Skip to main content
    • Aa
    • Aa

Three-dimensional theory on supercavitating hydrofoils near a free surface

  • Okitsugu Furuya (a1) (a2)

Supercavitating hydrofoils of large aspect ratio operating near a free surface are investigated, assuming an inviscid and irrotational flow with the effects of gravity and surface tension neglected. The flow near the foil, treated as two-dimensional, is solved by a nonlinear free-streamline theory, then a three-dimensional ‘downwash’ correction is made using Prandtl's lifting-line theory. The strength of the lifting-line vortex is determined by information from the two-dimensional solution through a matching procedure, in which the inverse of aspect ratio is used as a small parameter for asymptotic expansions. The analysis incorporates a free-surface reference level to determine the submergence depth of the foil. The present method can be applied to any type of foil having an arbitrary planform or profile shape, including a rounded leading edge, a twist and even a small dihedral angle, within the assumption of large aspect ratio. Numerical computations made on rectangular flat-plate hydrofoils show excellent agreement of results with existing experimental data, even for large angles of attack and relatively low aspect ratios. The pressure distributions, shapes of the cavity and free surface are also calculated as a function of spanwise position.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th June 2017. This data will be updated every 24 hours.