Skip to main content
    • Aa
    • Aa

Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

  • G. E. ELSINGA (a1), R. J. ADRIAN (a2), B. W. VAN OUDHEUSDEN (a1) and F. SCARANO (a1)

Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low-speed fluid, consistent with Tomkins & Adrian (J. Fluid Mech., vol. 490, 2003, p. 37). The observed hairpin structure is also a statistically relevant structure as is shown by the conditional average flow field associated to spanwise swirling motion. Spatial low-pass filtering of the velocity field reveals streamwise vortices and signatures of large-scale hairpins (height > 0.5δ), which are weaker than the smaller scale hairpins in the unfiltered velocity field. The large-scale hairpin structures in the instantaneous velocity fields are observed to be aligned in the streamwise direction and spanwise organized along diagonal lines. Additionally the autocorrelation function of the wall-normal swirling motion representing the large-scale hairpin structure returns positive correlation peaks in the streamwise direction (at 1.5δ distance from the DC peak) and along the 45° diagonals, which also suggest a periodic arrangement in those directions. This is evidence for the existence of a spanwise–streamwise organization of the coherent structures in a fully turbulent boundary layer.

Corresponding author
Present address: Laboratory for Aero and Hydrodynamics, Delft University of Technology, 2628CA Delft, The Netherlands. Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. J. Adrian 1996 Stochastic estimation of the structure of turbulent fields. In Eddy Structure Identification (ed. J. P. Bonnet ), pp. 145195. Springer-Verlag.

R. J. Adrian 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.

R. J. Adrian , C. D. Meinhart & C. D. Tomkins 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.

B. J. Balakumar & R. J. Adrian 2007 Large- and very large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365, 665681.

R. F. Blackwelder & L. S. G. Kovasznay 1972 Time scales and correlations in a turbulent boundary layer. Phys. Fluids 15, 1545.

P. Chakraborty , S. Balachandar & R. J. Adrian 2005 On the relationship between local vortex identification schemes. J. Fluid Mech. 535, 189214.

K. T. Christensen & R. J. Adrian 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.

C. J. Delo , R. M. Kelso & A. J. Smits 2004 Three-dimensional structure of a low-Reynolds-number turbulent boundary layer. J. Fluid Mech. 512, 4783.

G. E. Elsinga , F. Scarano , B. Wieneke & Oudheusden, B. W. van 2006 bTomographic particle image velocimetry. Exp. Fluids 41, 933947.

R. E. Falco 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20, S124S132.

B. Ganapathisubramani , N. T. Clemens & D. S. Dolling 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.

B. Ganapathisubramani , N. T. Clemens & D. S. Dolling 2007 a Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.

B. Ganapathisubramani , E. K. Longmire & I. Marusic 2003 Characteristics of vortex packets in the turbulent boundary layer. J. Fluid Mech. 478, 3546.

S. Garg & G. S. Settles 1998 Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry. Exp. Fluids 25, 254264.

M. Guala , S. E. Hommema & R. J. Adrian 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.

M. R. Head & P. Bandyopadhyay 1981 New aspects of the turbulent boundary layer structure. J. Fluid Mech. 107, 297338.

R. A. Humble , G. E. Elsinga , F. Scarano & Oudheusden, B. W. van 2009 Three-dimensional unsteady flow organization of shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.

R. A. Humble , F. Scarano & Oudheusden, B. W. van 2007 Particle image velocimetry measurements of shock wave/turbulent boundary layer interaction. Exp. Fluids 43, 173183.

N. Hutchins & I. Marusic 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.

K. C. Kim & R. J. Adrian 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.

S. J. Kline , W. C. Reynolds , F. A. Schraub & P. W. Runstadler 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.

M. P. Martin 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.

C. D. Meinhart & R. J. Adrian 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694696.

A. E. Perry , T. T. Lim & E. W. Teh 1981 A visual study of turbulent spots. J. Fluid Mech. 104, 387405.

M. J. Ringuette , M. Wu & M. P. Martin 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.

S. K. Robinson 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.

A. Savitzky & M. J. E. Golay 1964 Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 16271639.

F. Scarano & M. L. Riethmuller 2000 Advances in iterative multigrid PIV image processing. Exp. Fluids 29, 5160.

A. Schröder , R. Geisler , G. E. Elsinga , F. Scarano & U. Dierksheide 2007 Investigation of a turbulent spot and a tripped turbulent boundary layer using time-resolved tomographic PIV. Exp. Fluids 44, 305316.

A. J. Smits , K. Hayakawa & K. C. Muck 1983 Constant temperature hot-wire anemometry practice in supersonic flows; Part 1. The normal wire. Exp. Fluids 1, 8392.

M. W. Smith & A. J. Smits 1995 Visualization of the structure of supersonic turbulent boundary layers. Exp. Fluids 18, 288302.

E. F. Spina , J. F. Donovan & A. J. Smits 1991 On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293327.

E. F. Spina , A. J. Smits & S. K. Robinson 1994 The physics of supersonic boundary layers. Annu. Rev. Fluid Mech. 26, 287319.

C. D. Tomkins & R. J. Adrian 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.

B. Wieneke 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45, 549556.

J. Zhou , R. J. Adrian , S. Balachandar & T. M. Kendall 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 86 *
Loading metrics...

Abstract views

Total abstract views: 173 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.