Skip to main content Accessibility help
×
Home

Time-dependent critical layers in shear flows on the beta-plane

  • Fred J. Hickernell (a1)

Abstract

The problem of a finite-amplitude free disturbance of an inviscid shear flow on the beta-plane is studied. Perturbation theory and matched asymptotics are used to derive an evolution equation for the amplitude of a singular neutral mode of the Kuo equation. The effects of time-dependence, nonlinearity and viscosity are included in the analysis of the critical-layer flow. Nonlinear effects inside the critical layer rather than outside the critical layer determine the evolution of the disturbance. The nonlinear term in the evolution equation is some type of convolution integral rather than a simple polynomial. This makes the evolution equation significantly different from those commonly encountered in fluid wave and stability problems.

Copyright

References

Hide All
Benney, D. J. & Bergeron, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths 48, 181204.
Benney, D. J. & Maslowe, S. A. 1975 The evolution in space and time of nonlinear waves in parallel shear flows. Stud. Appl. Maths 54, 181205.
Brown, S. N. & Stewartson, K. 1978a The evolution of the critical layer of a Rossby wave. Part II. Geophys. Astrophys. Fluid Dyn. 10, 124.
Brown, S. N. & Stewartson, K. 1978b The evolution of a small inviscid disturbance to a marginally unstable stratified shear flow; stage two. Proc. R. Soc. Lond. A 363, 174194.
Brown, S. N. & Stewartson, K. 1980 On the nonlinear reflexion of a gravity wave at a critical level. Part 1. J. Fluid Mech. 100, 577595.
Brown, S. N. & Stewartson, K. 1982a On the nonlinear reflexion of a gravity wave at a critical level. Part 2. J. Fluid Mech. 115, 217230.
Brown, S. N. & Stewartson, K. 1982b On the nonlinear reflexion of a gravity wave at a critical level. Part 3. J. Fluid Mech. 115, 231250.
Burns, A. G. & Maslowe, S. A. 1983 Finite-amplitude stability of a zonal shear flow. J. Atmos. Sci. 40, 39.
Davis, R. E. 1969 On high Reynolds number flow over a wavy boundary. J. Fluid Mech. 36, 337346.
Dickinson, R. E. & Clare, F. J. 1973 Numerical study of the unstable modes of a barotropic shear flow. J. Atmos. Sci. 30, 10351049.
Drazin, P. G. 1970 Kelvin—Helmholtz instability of finite amplitude. J. Fluid Mech. 42, 321335.
Drazin, P. G. & Howard, L. N. 1966 Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9, 189.
Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Math. 51, 139161.
Hickernell, F. J. 1983 The evolution of large-horizontal-scale disturbances in marginally stable, inviscid, shear flows. I. Derivation of the amplitude evolution equations. Stud. Appl. Maths 69, 121.
Howard, L. N. & Drazin, P. G. 1964 On instability of parallel flow of inviscid fluid in a rotating system with variable coriolis parameter. J. Maths & Phys. 43, 8399.
Huerre, P. 1980 The nonlinear stability of a free shear layer in the viscous critical layer regime. Phil. Trans. R. Soc. Lond. A 293, 643675.
Huerre, P. & Scott, J. F. 1980 Effects of critical layer structure on the evolution of waves in free shear layers. Proc. R. Soc. Lond. A 371, 509524.
Kelly, R. A. & Maslowe, S. A. 1970 The nonlinear critical layer in a slightly stratified shear flow. Stud. Appl. Math. 49, 301326.
Kuo, H. L. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Met. 6, 105122.
Maslowe, S. A. 1972 The generation of clear air turbulence by nonlinear waves. Stud. Appl. Maths 51, 116.
Maslowe, S. A. & Kelly, R. E. 1970 Finite-amplitude oscillations in a Kelvin—Helmholtz flow. Int. J. Non-linear Mech. 5, 427435.
Maslowe, S. A. & Redekopp, L. G. 1979 Solitary waves in stratified shear flows. Geophys. Astrophys. Fluid Dyn. 13, 185196.
Maslowe, S. A. & Redekopp, L. G. 1980 Long nonlinear waves in stratified shear flows. J. Fluid Mech. 101, 321348.
Rayleigh, Lord 1880 On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. (Ser. 1) 11, 5770.
Redekopp, L. G. 1977 Theory of solitary Rossby waves. J. Fluid Mech. 82, 725745.
Rossby, C.-G. et al. 1939 Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacement of the semi-permanent centers of action. J. Mar. Res. 2, 3855.
Schade, H. 1964 Contribution to the nonlinear stability theory of inviscid shear layers. Phys. Fluids 7, 623628.
Stakgold, I. 1979 Green's Functions and Boundary Value Problems. Wiley.
Stewartson, K. 1978 The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn. 9, 185200.
Stewartson, K. 1981 Marginally stable inviscid flows with critical layers. IMA J. Appl. Math. 27, 133175.
Warn, T. & Warn, H. 1978 The evolution of a nonlinear critical level. Stud. Appl. Math. 59, 3771.
Weissman, M. A. 1979 Nonlinear wave packets in the Kelvin—Helmholtz instability. Phil. Trans. R. Soc. Lond. A 290, 639681.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Time-dependent critical layers in shear flows on the beta-plane

  • Fred J. Hickernell (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.