Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-23T02:47:01.980Z Has data issue: false hasContentIssue false

Time-dependent scaling relations and a cascade model of turbulence

Published online by Cambridge University Press:  19 April 2006

Thomas L. Bell
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York Present address: National Center for Atmospheric Research, Boulder, Colorado 80303.
Mark Nelkin
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York

Abstract

We study the time-dependent solutions of a nonlinear cascade model for homogeneous isotropic turbulence first introduced by Novikov & Desnyansky. The dynamical variables of the model are the turbulent kinetic energies in discrete wave-number shells of thickness one octave. The model equations contain a parameter C whose size governs the amount of energy cascaded to small wavenumbers relative to the amount cascaded to large wavenumbers. We show that the equations permit scale-similar evolution of the energy spectrum. For 0 ≤ C ≤ 1 and no external force, the freely evolving energy spectrum displays the Kolmogorov k power law, and the total energy decreases in time as a power t−w, where the exponent w depends on the value of C. Grid-turbulence experiments seem to favour a value of C in the range 0·3-0·6. In the presence of an external stirring force acting near a wavenumber k0, the model predicts, in addition to the Kolmogorov k spectrum for k > k0, a scale-similar flow of energy to wavenumbers k < k0. This backward energy flow falls off as a power law in time, and establishes a stationary energy spectrum for k < k0 which is a power law in k less steep than k. We discuss the similarity of the behaviour of the model for C > 1 to the behaviour of turbulent fluid for a spatial dimensionality near 2. The model is shown to approach the Kovasznay and the Leith diffusion approximation equations in the limit in which the thickness of the wavenumber shells approaches zero. However, the cascade model with finite shell thicknesses appears to behave in a more physically reasonable way than the limiting differential equations.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1969 Phys. Fluids Suppl. 12, II 233–239.
Bell, T. L. & Nelkin, M. 1977 Phys. Fluids 20, 345350.
Brissaud, A., Frisch, U., LÉORAT, J., Lesieur, M., Mazure, A., Pouquet, A., Sadourny, R. & Sulem, P. L. 1973 Ann. Geophys. 29, 539546.
Desnyansky, V. N. & Novikov, E. A. 1974a Prikl. Mat. Mekh. 38, 507513.
Desnyansky, V. N. & Novikov, E. A. 1974b Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 10, 127136.
Fournier, J.-D. & Frisch, U. 1978 Phys. Rev. A 17, 747762.
Frisch, U., Lesieur, M. & Sulem, P. L. 1976 Phys. Rev. Lett. 37, 895897.
Gad-El-Hak, M. & Corrsin, S. 1974 J. Fluid Mech. 62, 115143.
Gledzer, E. B. 1973 Dokl. Akad. Nauk SSSR 209, 10461048. (See also Sov. Phys. Dokl. 18, 216–217.)
Heisenberg, W. 1948 Z. Phys. 124, 628657.
Kolmogorov, A. N. 1941 Dokl. Akad. Nauk SSSR 30, 301.
Kovasznay, L. G. S. 1948 J. Aero. Sci. 15, 745753.
Kraichnan, R. H. 1967 Phys. Fluids, 10, 14171423.
Kraichnan, R. H. 1971a J. Fluid Mech. 47, 513524.
Kraichnan, R. H. 1971b J. Fluid Mech. 47, 525535.
Leith, C. E. 1967 Phys. Fluids 10, 14091416.
Lesieur, M. & Schertzer, D. 1977 Amortissement auto-similaire d'une turbulence à grand nombre de Reynolds. Preprint.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.
Newman, G. R. 1977 A test field model study of a passive scalar in isotropic turbulence. Preprint.
Oboukhov, A. M. 1971 Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 7, 471475.
Poquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305319.
Rose, H. & Sulem, P. L. 1978 Fully developed turbulence and statistical mechanics. J. de Physique (in press).Google Scholar
Siggia, E. D. 1977 Phys. Rev. A 15, 17301750.