Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-12T00:10:33.535Z Has data issue: false hasContentIssue false

Time-dependent Taylor–Aris dispersion of an initial point concentration

Published online by Cambridge University Press:  02 July 2014

Søren Vedel*
Affiliation:
Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345 B, DK-2800 Kongens Lyngby, Denmark
Emil Hovad
Affiliation:
Department of Micro- and Nanotechnology, Technical University of Denmark, Building 345 B, DK-2800 Kongens Lyngby, Denmark
Henrik Bruus
Affiliation:
Department of Physics, Technical University of Denmark, Building 309, DK-2800 Kongens Lyngby, Denmark
*
Present address: Niels Bohr International Academy and Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. Email address for correspondence: svedel@nbi.dk

Abstract

Based on the method of moments, we derive a general theoretical expression for the time-dependent dispersion of an initial point concentration in steady and unsteady laminar flows through long straight channels of any constant cross-section. We retrieve and generalize previous case-specific theoretical results, and furthermore predict new phenomena. In particular, for the transient phase before the well-described steady Taylor–Aris limit is reached, we find anomalous diffusion with a dependence of the temporal scaling exponent on the initial release point, generalizing this finding in specific cases. During this transient we furthermore identify maxima in the values of the dispersion coefficient which exceed the Taylor–Aris value by amounts that depend on channel geometry, initial point release position, velocity profile and Péclet number. We show that these effects are caused by a difference in relaxation time of the first and second moments of the solute distribution and may be explained by advection-dominated dispersion powered by transverse diffusion in flows with local velocity gradients.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdari, A., Bontoux, N. & Stone, H. A. 2006 Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Anal. Chem. 78, 387392.CrossRefGoogle ScholarPubMed
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.Google Scholar
Aris, R. 1960 On the dispersion of solute in pulsating flow through a tube. Proc. R. Soc. Lond. A 259 (1298), 370376.Google Scholar
Barton, N. G. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.CrossRefGoogle Scholar
Bontoux, N., Pépin, A., Chen, Y., Ajdari, A. & Stone, H. A. 2006 Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab Chip 6, 930935.CrossRefGoogle ScholarPubMed
Bruus, H. 2008 Theoretical Microfluidics. Oxford University Press.Google Scholar
Camassa, R., Lin, Z. & McLaughlin, R. 2010 The exact evolution of scalar variance in pipe and channel flow. Commun. Math. Sci. 8 (2), 601626.CrossRefGoogle Scholar
Codd, S. L., Manz, B., Seymour, J. D. & Callaghan, P. T. 1999 Taylor dispersion and molecular displacements in Poiseuille flow. Phys. Rev. E 60, R3491R3494.CrossRefGoogle ScholarPubMed
Davit, Y., Byrne, H., Osborne, J., Pitt-Francis, J., Gavaghan, D. & Quintard, M. 2013 Hydrodynamic dispersion within porous biofilms. Phys. Rev. E 87, 012718.CrossRefGoogle ScholarPubMed
Fallon, M. S., Howell, B. A. & Chauhan, A. 2009 Importance of Taylor dispersion in pharmacokinetic and multiple indicator dilution modeling. Math. Med. Biol. 26, 263296.CrossRefGoogle Scholar
Foister, R. T. & van de Ven, T. G. M. 1980 Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96, 105132.CrossRefGoogle Scholar
Latini, M. & Bernoff, A. J. 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.CrossRefGoogle Scholar
Leighton, D. T. 1989 Diffusion from an intial point distribution in an unbounded oscillating simple shear flow. Physico-Chem. Hydrodyn. 11, 377386.Google Scholar
Mehta, M. L. 2004 Random Matrices, 3rd edn. Pure and Applied Mathematics, vol. 142. Elsevier/Academic Press.Google Scholar
Mukherjee, A. & Mazumder, B. S. 1988 Dispersion of contaminant in oscillatory flows. Acta Mech. 74, 107.CrossRefGoogle Scholar
Ostwald, W. 1929 On the arithmetical representation of viscosity structural fields. Kolloidn. Z. 47 (2), 176187.CrossRefGoogle Scholar
Paul, S. & Mazumder, B. S. 2008 Dispersion in unsteady Couette–Poiseuille flows. Intl J. Engng Sci. 46, 12031217.CrossRefGoogle Scholar
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines?. J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186.Google Scholar
Vedel, S. & Bruus, H. 2012 Transient Taylor–Aris dispersion for time-dependent flows in straight channels. J. Fluid Mech. 691, 95122.CrossRefGoogle Scholar
Vedel, S., Olesen, L. H. & Bruus, H. 2010 Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems. J. Micromech. Microengng 20, 035026.CrossRefGoogle Scholar
Watson, E. J. 1983 Diffusion in oscillatory pipe flow. J. Fluid Mech. 133, 233244.CrossRefGoogle Scholar
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.CrossRefGoogle ScholarPubMed