Skip to main content
×
Home
    • Aa
    • Aa

Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

  • E. Q. Li (a1) and S. T. Thoroddsen (a1)
Abstract

When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

Copyright
Corresponding author
Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W. Bouwhuis , R. C. A. van der Veen , T. Tran , D. L. Keij , K. G. Winkels , I. R. Peters , D. van der Meer , C. Sun , J. H. Snoeijer  & D. Lohse 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.

S. Chandra  & C. T. Avedisian 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.

J. Crooks , B. Marsh , R. Turchetta , K. Taylor , W. Chan , A. Lahav  & A. Fenigstein 2013 Kirana: a solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proc. SPIE 8659, 865903.

M. M. Driscoll  & S. R. Nagel 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.

M. M. Driscoll , C. S. Stevens  & S. R. Nagel 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 82, 036302.

L. Duchemin  & C. Josserand 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.

P. D. Hicks , E. V. Ermanyuk , N. V. Gavrilov  & R. Purvis 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.

P. D. Hicks  & R. Purvis 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.

P. D. Hicks  & R. Purvis 2013 Liquid-solid impacts with compressible gas cushioning. J. Fluid Mech. 735, 120149.

E. Klaseboer , R. Manica  & D. Y. C. Chan 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113, 194501.

J. M. Kolinski , L. Mahadevan  & S. M. Rubinstein 2014 Drops can bounce from perfectly hydrophilic surfaces. Eur. Phys. Lett. 108, 24001.

J. M. Kolinski , S. M. Rubinstein , S. Mandre , M. P. Brenner , D. A. Weitz  & L. Mahadevan 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.

A. A. Korobkin , A. S. Ellis  & F. T. Smith 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.

A. Latka , A. Strandburg-Peshkin , M. M. Driscoll , C. S. Stevens  & S. R. Nagel 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109, 054501.

J. S. Lee , B. M. Weon , J. H. Je  & K. Fezzaa 2012 How does an air film evolve into a bubble during drop impact? Phys. Rev. Lett. 109, 204501.

Y. Liu , P. Tan  & L. Xu 2013 Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716, R9.

S. Mandre  & M. P. Brenner 2012 The mechanism of a splash on a dry solid surface. J. Fluid. Mech. 690, 148172.

S. Mandre , M. Mani  & M. P. Brenner 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.

M. Mani , S. Mandre  & M. P. Brenner 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.

D. Richard , C. Clanet  & D. Quéré 2002 Contact time of a bouncing drop. Nature 417, 811.

J. de Ruiter , R. Lagraauw , D van den Ende  & F. Mugele 2014 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11, 4853.

J. de Ruiter , J. M. Oh , D. van den Ende  & F. Mugele 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.

F. T. Smith , L. Li  & G. X. Wu 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.

M. -J. Thoraval , K. Takehara , T. G. Etoh  & S. T. Thoroddsen 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.

S. T. Thoroddsen , T. G. Etoh , K. Takehara , N. Ootsuka  & Y. Hatsuki 2005 The air-bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.

S. T. Thoroddsen  & J. Sakakibara 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 13591373.

S. T. Thoroddsen , K. Takehara  & T. G. Etoh 2010 Bubble entrapment through topological change. Phys. Fluids 22, 051701.

S. T. Thoroddsen , K. Takehara  & T. G. Etoh 2012 Micro-splashing by drop impacts. J. Fluid Mech. 706, 560570.

D. B. Van Dam  & C. Le Clerc 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16, 34033414.

R. C. A. van der Veen , T. Tran , D. Lohse  & C. Sun 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.

A.-B. Wang , C.-C. Kuan  & P.-H. Tsai 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25, 101702.

L. Xu , W. W. Zhang  & S. R. Nagel 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Li and Thoroddsen supplementary movie
Interference fringes corresponding to Figure 3f.

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Li and Thoroddsen supplementary movie
Shape of air-disc after contact for conditions in Figure 3(c).

 Video (694 KB)
694 KB
VIDEO
Movies

Li and Thoroddsen supplementary movie
Shape of air-disc after contact for conditions in Figure 3(c).

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Li and Thoroddsen supplementary movie
Interference fringes corresponding to Figure 3f.

 Video (10.1 MB)
10.1 MB
VIDEO
Movies

Li and Thoroddsen supplementary movie
Interference fringes corresponding to Figure 3(d,e).

 Video (14.9 MB)
14.9 MB
VIDEO
Movies

Li and Thoroddsen supplementary movie
Interference fringes corresponding to Figure 3(d,e).

 Video (9.4 MB)
9.4 MB

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 121 *
Loading metrics...

Abstract views

Total abstract views: 291 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2017. This data will be updated every 24 hours.