Skip to main content Accessibility help
×
×
Home

Tip-vortex instability and turbulent mixing in wind-turbine wakes

  • L. E. M. Lignarolo (a1), D. Ragni (a1), F. Scarano (a1), C. J. Simão Ferreira (a1) and G. J. W. van Bussel (a1)...
Abstract

Kinetic-energy transport and turbulence production within the shear layer of a horizontal-axis wind-turbine wake are investigated with respect to their influence on the tip-vortex pairwise instability, the so-called leapfrogging instability. The study quantifies the effect of near-wake instability and tip-vortex breakdown on the process of mean-flow kinetic-energy transport within the far wake of the wind turbine, in turn affecting the wake re-energising process. Experiments are conducted in an open-jet wind tunnel with a wind-turbine model of 60 cm diameter at a diameter-based Reynolds number range $\mathit{Re}_{D}=150\,000{-}230\,000$ . The velocity fields in meridian planes encompassing a large portion of the wake past the rotor are measured both in the unconditioned and the phase-locked mode by means of stereoscopic particle image velocimetry. The detailed topology and development of the tip-vortex interactions are discussed prior to a statistical analysis based on the triple decomposition of the turbulent flow fields. The study emphasises the role of the pairing instability as a precursor to the onset of three-dimensional vortex distortion and breakdown, leading to increased turbulent mixing and kinetic-energy transport across the shear layer. Quadrant analysis further elucidates the role of sweep and ejection events within the two identified mixing regimes. Prior to the onset of the instability, vortices shed from the blade appear to inhibit turbulent mixing of the expanding wake. The second region is dominated by the leapfrogging instability, with a sudden increase of the net entrainment of kinetic energy. Downstream of the latter, random turbulent motion characterises the flow, with a significant increase of turbulent kinetic-energy production. In this scenario, the leapfrogging mechanism is recognised as the triggering event that accelerates the onset of efficient turbulent mixing followed by the beginning of the wake re-energising process.

Copyright
Corresponding author
Email address for correspondence: L.E.M.Lignarolo-2@tudelft.nl
References
Hide All
Akay, B., Ferreira, C. S., Van Bussel, G. J. W. & Herraez, I. 2012 Experimental and numerical quantification of radial flow in the root region of a HAWT. In Proceedings of the 50th AIAA Aerospace Sciences Meeting, Nashville, USA, American Institute of Aeronautics and Astronautics (AIAA).
Antonia, R. A. & Browne, L. W. B. 1987 Quadrant analysis in the turbulent far-wake of a cylinder. Fluid Dyn. Res. 2 (1), 314.
Antonia, R. A., Browne, L. W. B., Bisset, D. K. & Fulachier, L. 1987 A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds number. J. Fluid Mech. 184, 423444.
Antonia, R. A., Chambers, A. J., Britz, D. & Browne, L. W. B. 1986 Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport. J. Fluid Mech. 172, 211229.
Benedict, L. H. & Gould, R. D. 1996 Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22 (2), 129136.
Bolnot, H., Le Dizès, S. & Leweke, T. 2014 Pairing instability in helical vortices. In Wind Energy – Impact of Turbulence, vol. 2, pp. 2328. Springer.
Bolnot, H., Leweke, T. & Le Dizès, S. 2011 Spatio-temporal development of the pairing instability in helical vortices. In Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference. Honolulu, Hawaii. AIAA.
Browand, F. K. & Weidman, P. D. 1976 Large scales in the developing mixing layer. J. Fluid Mech. 76 (01), 127144.
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S. & Meneveau, C. 2010 Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renew. Sustain. Energy 2, 013106.
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22 (1), 015110015116.
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.
Chamorro, L. P., Arndt, R. E. A. & Sotiropoulos, F. 2012 Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy 15 (5), 733742.
Crespo, A., Hernández, J. & Frandsen, S. 1999 Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy 2 (1), 124.
Dobrev, I., Maalouf, B., Troldborg, N. & Massouh, F. 2008 Investigation of the wind turbine vortex structure. In Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.
Escudié, R. & Liné, A. 2003 Experimental analysis of hydrodynamics in a radially agitated tank. AIChE J. 49 (3), 585603.
Fabris, G. 1979 Conditional sampling study of the turbulent wake of a cylinder. Part 1. J. Fluid Mech. 94 (04), 673709.
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.
Ferreira, C. S.2009 The near wake of the VAWT: 2D and 3D views of the VAWT aerodynamics, Delft University of Technology.
Ghaemi, S. & Scarano, F. 2011 Counter–Hairpin vortices in the turbulent wake of a sharp trailing edge. J. Fluid Mech. 689, 317356.
Hamilton, N., Kang, H. S., Meneveau, C. & Cal, R. B. 2012 Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer. J. Renew. Sustain. Energy 4 (6), 063105063119.
Hattori, Y., Moeng, C.-H., Suto, H., Tanaka, N. & Hirakuchi, H. 2010 Wind-tunnel experiment on logarithmic-layer turbulence under the influence of overlying detached eddies. Boundary-Layer Meteorol. 134 (2), 269283.
Herpin, S., Wong, C. Y., Stanislas, M. & Soria, J. 2008 Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp. Fluids 45 (4), 745763.
Humble, R. A.2008 Unsteady flow organisation of a shock wave/boundary layer interaction. Aerospace Engineering, Delft University of Technology.
Hussain, A. K. M. F. 1981 Role of coherent structures in turbulent shear flows. Proc. Indian Acad. Sci. C 4 (2), 129175.
Hussain, A. K. M. F. 1983 Coherent structures – reality and myth. Phys. Fluids 26 (10), 28162850.
Hütter, U. 1977 Optimum wind-energy conversion systems. Annu. Rev. Fluid Mech. 9, 399419.
Ivanell, S.2009 Numerical computations of wind turbine wakes. Linne Flow Centre, Department of Mechanics. SE-100 44 Stockholm, Sweden, Royal Institute of Technology KTH – Gotland University.
Ivanell, S., Mikkelsen, R., Sørensen, J. N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13 (8), 705715.
Joukowsky, N. E. 1912 Vortex Theory of Screw Propeller. Gauthier-Villars.
Katul, G., Kuhn, G., Schieldge, J. & Hsieh, C.-I. 1997 The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol. 83 (1), 126.
Katul, G., Poggi, D., Cava, D. & Finnigan, J. 2006 The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol. 120 (3), 367375.
Leishman, J. G. 1998 Measurements of the aperiodic wake of a hovering rotor. Exp. Fluids 25 (4), 352361.
Leweke, T., Bolnot, H., Quaranta, U. & Le Dizès, S. 2013 Local and global pairing in helical vortex systems. In Proceedings of the International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes Lyngby, Denmark.
Lignarolo, L. E. M., Ragni, D., Krishnaswami, C., Chen, Q., Simão Ferreira, C. J. & Van Bussel, G. J. W. 2014 Experimental analysis of the wake of a horizontal-axis wind-turbine model. Renew. Energy 70, 3146.
Lugt, H. J. 1996 Introduction to Vortex Theory. Vortex Flow Press.
Medici, D.2005 Experimental Studies of Wind Turbine Wakes – Power Optimisation and Meandering. Mechanics. Stockholm, Royal Institute of Technology (KTH).
Odemark, Y. & Fransson, J. H. M. 2013 The stability and development of tip and root vortices behind a model wind turbine. Exp. Fluids 54 (9), 116.
Okulov, V. & Sorensen, J. 2004 Instability of a vortex wake behind wind turbines. Dokl. Phys. 49 (12), 772777.
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.
Okulov, V. L. & Sorensen, J. N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech. 576, 125.
Pentek, A., Tel, T. & Toroczkai, T. 1995 Chaotic advection in the velocity field of leapfrogging vortex pairs. J. Phys. A: Math. Gen. 28 (8), 2191.
Poggi, D. & Katul, G. 2008 The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp. Fluids 45 (1), 111121.
Raffel, M., Willert, C. E., Wereley, S. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide. Springer Science & Business Media.
Ragni, D., Ashok, A., Van Oudheusden, B. W. & Scarano, F. 2009 Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry. Meas. Sci. Technol. 20 (7), 074005.
Ragni, D., Oudheusden, B. W. & Scarano, F. 2011 Non-intrusive aerodynamic loads analysis of an aircraft propeller blade. Exp. Fluids 51 (2), 361371.
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (02), 263288.
Riley, N. & Stevens, D. P. 1993 A note on leapfrogging vortex rings. Fluid Dyn. Res. 11 (5), 235244.
van Rooij, R. P. J. O. M. V.1996 Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction. Delft, Delft University of Technology.
Saffman, P. G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49, 371380.
Schepers, J. G.2012 Engineering models in wind energy aerodynamics. PhD thesis, Aerospace Engineering, Delft University of Technology.
Schreck, S., Lundquist, J. & Shaw, W.2008 US Department of Energy Workshop Report Research needs for wind resource characterization. Golden, CO, National Renewable Energy Laboratory.
Selig, M. S., Guglielmo, J. J., Broeren, A. P. & Giguère, P. 1995 Summary of Low-Speed Airfoil Data. SoarTech.
Snel, H., Schepers, J. G. & Montgomerie, B. 2007 The MEXICO Project (model experiments in controlled conditions): The database and first results of data processing and interpretation. J. Phys.: Conf. Ser. 75 (1), 012014.
Sørensen, J. N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.
Stanislas, M., Perret, L. & Foucaut, J. M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.
Tophøj, L. & Aref, H. 2013 Instability of vortex pair leapfrogging. Phys. Fluids 25 (1), 014107.
Vandernoot, F.-X., Barricau, P., Bézard, H. & Boisson, H.-C. 2008 Mean and turbulence measurements of wake vortices. Wandering effects. In Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal.
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aeronaut. Sci. 39 (6–7), 467510.
Violato, D. & Scarano, F. 2011 Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys. Fluids 23 (12), 124104.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (01), 3948.
Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 13791392.
Whale, J., Anderson, C. G., Bareiss, R. & Wagner, S. 2000 An experimental and numerical study of the vortex structure in the wake of a wind turbine. J. Wind Engng Ind. Aerodyn. 84 (1), 121.
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (04), 641663.
Widnall, S. E. & Sullivan, J. P. 1973 On the Stability of Vortex Rings. The Royal Society.
Willmarth, W. W. & Lu, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55 (01), 6592.
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63 (02), 237255.
Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89 (03), 413432.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed