Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T20:07:52.951Z Has data issue: false hasContentIssue false

Tomographic PIV investigation on near-wake structures of a hemisphere immersed in a laminar boundary layer

Published online by Cambridge University Press:  22 September 2023

Han Tu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
Zhongyi Wang
Affiliation:
Key Laboratory of Fluid Mechanics, Ministry of Education, Beihang University, Beijing 100191, PR China
Qi Gao*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Wenxuan She
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Fujun Wang
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic System, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Jinjun Wang
Affiliation:
Key Laboratory of Fluid Mechanics, Ministry of Education, Beihang University, Beijing 100191, PR China
Runjie Wei
Affiliation:
MicroVec Inc., Beijing 100191, PR China
*
Email address for correspondence: qigao@zju.edu.cn

Abstract

The near wake of a hemisphere immersed in a laminar boundary layer is studied utilizing time-resolved tomographic particle image velocimetry (TPIV). Focus is placed on the three-dimensional vortical structures and the formation details of hairpin vortices before the onset of transition. The three-dimensional instantaneous pressure field of the hemisphere wake is reconstructed for better understanding the flow mechanism. Experiments are carried out with Reynolds number $Re_{r}=1370$, based on the hemisphere radius $R$. Features of periodicity of the near wake are analysed using proper orthogonal decomposition and Fourier transformation. The velocity fluctuation in the wall-normal direction is shown to be crucial to the formation of hairpin vortices in the near wake. By investigating the transport of mass and vorticity, and the correlation between pressure and hairpin vortex strength, the formation mechanism is revealed clearly. Specifically, the main hairpin vortices (MHVs) are formed within the reaction of outer high-speed flow and near-wall flow. The formation of the head portion is followed by the leg portion formation. The shedding of the MHVs is highly correlated with the pressure, as well as the pressure gradient in the wall-normal direction. For the side hairpin vortices (SHVs), the leg portion is formed first, followed by the generation of the head portion thanks to induction of the re-oriented standing vortices. The generation of the SHVs can be regarded as the downstream bridging of the standing vortices, similar to the generation of hairpin vortices due to the connection of streamwise vortices in turbulent boundary layers.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M.S. & Smith, C.R. 1987 a A study of hairpin vortices in a laminar boundary layer, Part 1: hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Acarlar, M.S. & Smith, C.R. 1987 b A study of hairpin vortices in a laminar boundary layer, Part 2: hairpin vortices generated by fluid injection. J. Fluid Mech. 175, 4383.CrossRefGoogle Scholar
Adhikari, D. & Longmire, E.K. 2013 Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator–prey interaction. Meas. Sci. Technol. 24, 024011.CrossRefGoogle Scholar
Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Baur, T. 1999 PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena. In Proceedings of the 3rd International Workshop on PIV – Santa Barbara, pp. 101–106.Google Scholar
Belkhou, H., Russeil, S., Dbouk, T., Mobtil, M., Bougeard, D. & Francois, N.Y. 2019 Large eddy simulation of boundary layer transition over an isolated ramp-type micro roughness element. Intl J. Heat Fluid Flow 80, 108492.CrossRefGoogle Scholar
Cai, S., Wang, Z., Fuest, F., Jeon, Y., Gray, C. & Karniadakis, G. 2021 Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. J. Fluid Mech. 915, A102.CrossRefGoogle Scholar
Cao, Y. & Tamura, T. 2020 Large-eddy simulation study of Reynolds number effects on the flow around a wall-mounted hemisphere in a boundary layer. Phys. Fluids 32 (2), 025109.CrossRefGoogle Scholar
Carr, I.A., Beratlis, N., Balaras, E. & Plesniak, M.W. 2020 Effects of highly pulsatile inflow frequency on surface-mounted bluff body wakes. J. Fluid Mech. 904, A29.CrossRefGoogle Scholar
Carr, I.A. & Plesniak, M.W. 2016 Three-dimensional flow separation over a surface-mounted hemisphere in pulsatile flow. Exp. Fluids 57 (1), 9.CrossRefGoogle Scholar
Cherubini, S., De Tullio, M., De Palma, P. & Pascazio, G. 2013 Transient growth in the flow past a three-dimensional smooth roughness element. J. Fluid Mech. 724, 642670.CrossRefGoogle Scholar
Christensen, K. & Adrian, R. 2002 Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy. Exp. Fluids 33 (6), 759769.CrossRefGoogle Scholar
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.CrossRefGoogle Scholar
Corino, E. & Brodkey, R. 1969 A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37 (1), 130.CrossRefGoogle Scholar
Dabiri, J.O., Bose, S., Gemmell, B.J., Colin, S.P. & Costello, J.H. 2014 An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements. J. Expl Biol. 217 (3), 331336.Google ScholarPubMed
Deng, S., Pan, C. & Wang, J. 2014 Dynamics of low-speed streak evolution and interaction in laminar boundary layer. Acta Mechanica Sin. 30 (5), 636645.CrossRefGoogle Scholar
Discetti, S., Natale, A. & Astarita, T. 2013 Spatial filtering improved tomographic PIV. Exp. Fluids 54 (4), 113.CrossRefGoogle Scholar
Eitel-Amor, G., Örlü, R., Schlatter, P. & Flores, O. 2015 Hairpin vortices in turbulent boundary layers. Phys. Fluids 27, 025108.CrossRefGoogle Scholar
Elsinga, G.E., Scarano, F., Wieneke, B. & van Oudheusden, B.W. 2006 Tomographic particle image velocimetry. Exp. Fluids 41, 933947.CrossRefGoogle Scholar
Eshbal, L., Rinsky, V., David, T., Greenblatt, D. & van Hout, R. 2019 Measurement of vortex shedding in the wake of a sphere at $Re = 465$. J. Fluid Mech. 870, 290315.CrossRefGoogle Scholar
Fang, X., Tachie, M. & Dow, K. 2022 Turbulent separations beneath semi-submerged bluff bodies with smooth and rough undersurfaces. J. Fluid Mech. 947, A19.CrossRefGoogle Scholar
Gao, Q., Ortiz-Dueñas, C. & Longmire, E.K. 2011 Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 678, 87123.CrossRefGoogle Scholar
Gao, Q., Wang, H. & Shen, G. 2013 Review on development of volumetric particle image velocimetry. Chinese Sci. Bull. 58 (36), 45414556.CrossRefGoogle Scholar
Gao, T., Sun, J., Chen, W., Fan, Y. & Zhang, Y. 2021 Experimental investigation on the effect of particles on large scale vortices of an isolated hemispherical roughness element. Phys. Fluids 33 (6), 063308.CrossRefGoogle Scholar
Gresho, P.M. & Sani, R.L. 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 7 (10), 11111145.CrossRefGoogle Scholar
Guala, M., Tomkins, C.D., Christensen, K.T. & Adrian, R.J. 2012 Vortex organization in a turbulent boundary layer overlying sparse roughness elements. J. Hydraul. Res. 50 (5), 465481.CrossRefGoogle Scholar
Gurka, R., Liberzon, A., Hefetz, D., Rubinstein, D. & Shavit, U. 1999 Computation of pressure distribution using PIV velocity data. In 3rd International Symposium on Particle Image Velocimetry – Santa Barbara, pp. 1–6.Google Scholar
Haidari, A.H. & Smith, C.R. 1994 The generation and regeneration of single hairpin vortices. J. Fluid Mech. 277, 135162.CrossRefGoogle Scholar
Hajimirzaie, S.M., Wojcik, C.J. & Buchholz, J.H.J. 2012 The role of shape and relative submergence on the structure of wakes of low-aspect-ratio wall-mounted bodies. Exp. Fluids 53 (6), 19431962.CrossRefGoogle Scholar
He, G., Wang, J. & Pan, C. 2013 Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. J. Fluid Mech. 718, 116130.CrossRefGoogle Scholar
Hinze, J.O. 1975 Turbulence. McGraw-Hill.Google Scholar
van Hout, R., Eisma, J., Elsinga, G.E. & Westerweel, J. 2018 Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer. Phys. Rev. Fluids 3 (2), 024601.CrossRefGoogle Scholar
van Hout, R., Hershkovitz, A., Elsinga, G.E. & Westerweel, J. 2022 Combined three-dimensional flow field measurements and motion tracking of freely moving spheres in a turbulent boundary layer. J. Fluid Mech. 944, A12.CrossRefGoogle Scholar
Jodai, Y. & Elsinga, G.E. 2016 Experimental observation of hairpin auto-generation events in a turbulent boundary layer. J. Fluid Mech. 795, 611633.CrossRefGoogle Scholar
Johnson, K.C., Thurow, B.S., Kim, T., Blois, G. & Christensen, K.T. 2017 Volumetric velocity measurements in the wake of a hemispherical roughness element. AIAA J. 55 (7), 21582173.CrossRefGoogle Scholar
de Kat, R. & Ganapathisubramani, B. 2013 Pressure from particle image velocimetry for convective flows: a Taylor's hypothesis approach. Meas. Sci. Technol. 24, 024002.CrossRefGoogle Scholar
de Kat, R. & van Oudheusden, B.W. 2012 Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52 (5), 10891106.CrossRefGoogle Scholar
Kiriakos, R.M., Rivero, M.J., Pournadali Khamseh, A. & DeMauro, E.P. 2021 Unsteady motion in the supersonic flow over a wall-mounted hemisphere. AIAA J. 60 (2), 688698.CrossRefGoogle Scholar
Klebanoff, P.S., Cleveland, W.G. & Tidstrom, K.D. 1992 On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element. J. Fluid Mech. 237, 101187.CrossRefGoogle Scholar
Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (1), 134.CrossRefGoogle Scholar
Koschatzky, V., Moore, P.D., Westerweel, J., Scarano, F. & Boersma, B.J. 2011 High speed PIV applied to aerodynamic noise investigation. Exp. Fluids 50 (4), 863876.CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2015 Fluid Mechanics. Academic.Google Scholar
Li, J., Qiu, X., Shao, Y., Liu, H., Fu, Y., Tao, Y. & Liu, Y. 2022 Turbulent coherent structures in channel flow with a wall-mounted hemisphere. AIP Adv. 12 (3), 035006.CrossRefGoogle Scholar
Liu, X. & Katz, J. 2006 Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41 (2), 227.CrossRefGoogle Scholar
Liu, X. & Katz, J. 2013 Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field. J. Fluid Mech. 728, 417457.CrossRefGoogle Scholar
Loiseau, J., Robinet, J., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Propagation (ed. A.M. Yaglom & V.I. Tatarski), pp. 166–178. Nauka.Google Scholar
Lynch, K. & Scarano, F. 2013 A high-order time-accurate interrogation method for time-resolved PIV. Meas. Sci. Technol. 24 (3), 035305.CrossRefGoogle Scholar
Lynch, K.P. & Scarano, F. 2015 An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV. Exp. Fluids 56, 1–16.CrossRefGoogle Scholar
Manhart, M. 1998 Vortex shedding from a hemisphere in a turbulent boundary layer. Theor. Comput. Fluid Dyn. 12 (1), 128.CrossRefGoogle Scholar
Mohaghar, M., Adhikari, D. & Webster, D.R. 2019 Characteristics of swimming shelled Antarctic pteropods (Limacina helicina antarctica) at intermediate Reynolds number regime. Phys. Rev. Fluids 4 (11), 111101.CrossRefGoogle Scholar
Mortazavi, M., Knight, D.D., Azarova, O.A., Shi, J. & Yan, H. 2014 Numerical simulation of energy deposition in a supersonic flow past a hemisphere. In 52nd Aerospace Sciences Meeting, p. 0944.Google Scholar
Murphy, D.W., Adhikari, D., Webster, D.R. & Yen, J. 2016 Underwater flight by the planktonic sea butterfly. J. Expl Biol. 219, 535.CrossRefGoogle ScholarPubMed
Novara, M. & Scarano, F. 2012 a Lagrangian acceleration evaluation for tomographic PIV: a particle-tracking based approach. In Proceedings of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, pp. 9–12.Google Scholar
Novara, M. & Scarano, F. 2012 b Performances of motion tracking enhanced Tomo-PIV on turbulent shear flows. Exp. Fluids 52 (4), 10271041.CrossRefGoogle ScholarPubMed
van Oudheusden, B.W. 2008 Principles and application of velocimetry-based planar pressure imaging in compressible flows with shocks. Exp. Fluids 45 (4), 657674.CrossRefGoogle Scholar
van Oudheusden, B.W. 2013 PIV-based pressure measurement. Meas. Sci. Technol. 24 (3), 032001.CrossRefGoogle Scholar
van Oudheusden, B.W., Scarano, F., Roosenboom, E.W.M., Casimiri, E.W.F. & Souverein, L.J. 2007 Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids 43 (2–3), 153162.CrossRefGoogle Scholar
Pan, C., Wang, J., Zhang, P. & Feng, L. 2008 Coherent structures in bypass transition induced by a cylinder wake. J. Fluid Mech. 603, 367389.CrossRefGoogle Scholar
Prevel, M., Vinkovic, I., Doppler, D., Pera, C. & Buffat, M. 2013 Direct numerical simulation of particle transport by hairpin vortices in a laminar boundary layer. Intl J. Heat Fluid Flow 43, 214.CrossRefGoogle Scholar
Pu, Y. & Meng, H. 2000 An advanced off-axis holographic particle image velocimetry (HPIV) system. Exp. Fluids 29 (2), 184197.CrossRefGoogle Scholar
Qin, Y. & Meng, W. 2009 Computational study of roughness-induced boundary-layer noise. AIAA J. 47 (10), 24172429.Google Scholar
Rinoshika, H., Rinoshika, A., Wang, J. & Zheng, Y. 2021 3D flow structures behind a wall-mounted short cylinder. Ocean Engng 221, 108535.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Sabatino, D.R. & Rossmann, T. 2015 Tomographic PIV measurements of a regenerating hairpin vortex. Exp. Fluids 57, 1–13.Google Scholar
Savory, E. & Toy, N. 1986 a The flow regime in the turbulent near wake of a hemisphere. Exp. Fluids 4 (4), 181188.CrossRefGoogle Scholar
Savory, E. & Toy, N. 1986 b Hemisphere and hemisphere-cylinders in turbulent boundary layers. J. Wind Engng Ind. Aerodyn. 23, 345364.CrossRefGoogle Scholar
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13 (1), R1R19.CrossRefGoogle Scholar
Scarano, F. 2013 Tomographic PIV: principles and practice. Meas. Sci. Technol. 24 (1), 012001.CrossRefGoogle Scholar
Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F. & Dierksheide, U. 2008 Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids 44 (2), 305316.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I – coherent structures. II – symmetries and transformations. III – dynamics and scaling. Q. Appl. Maths 45, 561571.CrossRefGoogle Scholar
Svizher, A. & Cohen, J. 2006 a Holographic particle image velocimetry measurements of hairpin vortices in a subcritical air channel flow. Phys. Fluids 18 (1), 014105.CrossRefGoogle Scholar
Svizher, A. & Cohen, J. 2006 b Holographic particle image velocimetry system for measurements of hairpin vortices in air channel flow. Exp. Fluids 40, 708722.CrossRefGoogle Scholar
Tamai, N., Asaeda, T. & Tanaka, N. 1987 Vortex structures around a hemispheric hump. Boundary-Layer Meteorol. 39 (3), 301314.CrossRefGoogle Scholar
Tang, Z. & Jiang, N. 2012 Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance. Sci. China Phys. Mech. 55 (1), 118124.CrossRefGoogle Scholar
Tani, I. 1981 Three-dimensional aspects of boundary-layer transition. Sadhana-Acad. P. Engng S. 4 (2), 219.Google Scholar
Tavakol, M.M. & Yaghoubi, M. 2010 Experimental and numerical analysis of turbulent air flow around a surface mounted hemisphere. Sci. Iran. 17 (6), 480.Google Scholar
Tavakol, M.M., Yaghoubi, M. & Motlagh, M.M. 2010 Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Exp. Therm. Fluid Sci. 34 (5), 538553.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of the Second Midwestern Conference on Fluid Mechanics, pp. 1–18. Ohio State University.Google Scholar
Thomas, F.O. & Liu, X. 2004 An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient. Phys. Fluids 16 (5), 17251745.CrossRefGoogle Scholar
Townsend, A.A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (01), 97120.CrossRefGoogle Scholar
Toy, N., Moss, W.D. & Savory, E. 1983 Wind tunnel studies on a dome in turbulent boundary layers. J. Wind Engng Ind. Aerodyn. 11 (1–3), 201212.CrossRefGoogle Scholar
Tu, H., Wang, F., Wang, H., Gao, Q. & Wei, R. 2022 Experimental study on wake flows of a live fish with time-resolved tomographic PIV and pressure reconstruction. Exp. Fluids 63 (1), 112.CrossRefGoogle Scholar
Wang, C., Gao, Q., Wang, J., Wang, B. & Pan, C. 2019 Experimental study on dominant vortex structures in near-wall region of turbulent boundary layer based on tomographic particle image velocimetry. J. Fluid Mech. 874, 426454.CrossRefGoogle Scholar
Wang, C., Gao, Q., Wang, H., Wei, R., Li, T. & Wang, J. 2016 a Divergence-free smoothing for volumetric PIV data. Exp. Fluids 57 (1), 15.CrossRefGoogle Scholar
Wang, C., Gao, Q., Wei, R., Li, T. & Wang, J. 2016 b 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing. Exp. Fluids 57 (6), 113.CrossRefGoogle Scholar
Wang, C., Gao, Q., Wei, R., Li, T. & Wang, J. 2017 a Spectral decomposition-based fast pressure integration algorithm. Exp. Fluids 58 (7), 84.CrossRefGoogle Scholar
Wang, D., Zhao, Y., Xia, Z., Wang, Q. & Huang, L. 2012 Experimental investigation of supersonic flow over a hemisphere. Chinese Sci. Bull. 57 (15), 17651771.CrossRefGoogle Scholar
Wang, H., Gao, Q., Wang, Z. & Wang, J. 2018 Error reduction for time-resolved PIV data based on Navier–Stokes equations. Exp. Fluids 59, 149.CrossRefGoogle Scholar
Wang, H., Gao, Q., Wei, R. & Wang, J. 2016 c Intensity-enhanced MART for tomographic PIV. Exp. Fluids 57 (5), 87.CrossRefGoogle Scholar
Wang, Y., Huang, W. & Xu, C. 2015 On hairpin vortex generation from near-wall streamwise vortices. Acta Mechanica Sin. 31 (2), 139152.CrossRefGoogle Scholar
Wang, Z., Gao, Q., Pan, C., Feng, L. & Wang, J. 2017 b Imaginary particle tracking accelerometry based on time-resolved velocity fields. Exp. Fluids 58 (9), 113.CrossRefGoogle Scholar
Wang, Z., Gao, Q., Wang, C., Wei, R. & Wang, J. 2016 d An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction. Exp. Fluids 57 (6), 104.CrossRefGoogle Scholar
Wieneke, B. 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45, 549556.CrossRefGoogle Scholar
Wood, J.N., De Nayer, G., Schmidt, S. & Breuer, M. 2016 Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow Turbul. Combust. 97 (1), 79119.CrossRefGoogle Scholar
Yang, W., Meng, H. & Sheng, J. 2001 Dynamics of hairpin vortices generated by a mixing tab in a channel flow. Exp. Fluids 30 (6), 705722.CrossRefGoogle Scholar
Ye, Q., Schrijer, F. & Scarano, F. 2016 a Boundary layer transition mechanisms behind a micro-ramp. J. Fluid Mech. 793, 132161.CrossRefGoogle Scholar
Ye, Q., Schrijer, F. & Scarano, F. 2016 b Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV. Intl J. Heat Fluid Flow 61, 3144.CrossRefGoogle Scholar
Ye, Q., Schrijer, F. & Scarano, F. 2018 On Reynolds number dependence of micro-ramp-induced transition. J. Fluid Mech. 837, 597626.CrossRefGoogle Scholar
Ye, Z., Gao, Q., Wang, H., Wei, R. & Wang, J. 2015 Dual-basis reconstruction techniques for tomographic PIV. Sci. China Technol. Sci. 58 (9), 18.CrossRefGoogle Scholar
Zhang, X., Tuna, B.A., Yarusevych, S. & Peterson, S.D. 2021 Flow development over isolated droplet-inspired shapes. Intl J. Heat Fluid Flow 88, 108756.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhu, H., Wang, C., Wang, H. & Wang, J. 2017 Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743778.CrossRefGoogle Scholar