Skip to main content
×
Home

Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle

  • Sumedh R. Risbud (a1) and German Drazer (a1)
Abstract
Abstract

We investigate the motion of a suspended non-Brownian sphere past a fixed cylindrical or spherical obstacle in the limit of zero Reynolds number for arbitrary particle–obstacle aspect ratios. We consider both a suspended sphere moving in a quiescent fluid under the action of a uniform force as well as a uniform ambient velocity field driving a freely suspended particle. We determine the distribution of particles around a single obstacle and solve for the individual particle trajectories to comment on the transport of dilute suspensions past an array of fixed obstacles. First, we obtain an expression for the probability density function governing the distribution of a dilute suspension of particles around an isolated obstacle, and we show that it is isotropic. We then present an analytical expression – derived using both Eulerian and Lagrangian approaches – for the minimum particle–obstacle separation attained during the motion, as a function of the incoming impact parameter, i.e. the initial offset between the line of motion far from the obstacle and a parallel line that goes through its centre. Further, we derive the asymptotic behaviour for small initial offsets and show that the minimum separation decays exponentially. Finally we use this analytical expression to define an effective hydrodynamic surface roughness based on the net lateral displacement experienced by a suspended sphere moving past an obstacle.

Copyright
References
Hide All
Adamczyk Z. 1989a Particle deposition from flowing suspensions. Colloids Surf. 39 (1), 137.
Adamczyk Z. 1989b Particle transfer and deposition from flowing colloid suspensions. Colloids Surf. 35 (2), 283308.
Adamczyk Z. & van de Ven T. G. M. 1981 Deposition of Brownian particles onto cylindrical collectors. J. Colloid Interface Sci. 84 (2), 497518.
Almog Y. & Brenner H. 1997 Non-continuum anomalies in the apparent viscosity experienced by a test sphere moving through an otherwise quiescent suspension. Phys. Fluids 9 (1), 1622.
Balvin M., Sohn E., Iracki T., Drazer G. & Frechette J. 2009 Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys. Rev. Lett. 103 (7), 078301.
Batchelor G. K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part I. General theory. J. Fluid Mech. 119, 379408.
Batchelor G. K. 1983 Corrigendum: Sedimentation in a dilute polydisperse system of interacting spheres. Parts I and II. J. Fluid Mech. 137, 467469.
Batchelor G. K. & Green J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order inline-graphic ${c}^{2} $ . J. Fluid Mech. 56, 401427.
Batchelor G. K. & Wen C. S. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part II. Numerical results. J. Fluid Mech. 124, 495528.
Bergenholtz J., Brady J. F. & Vicic M 2002 The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456, 239275.
Blanc F., Peters F. & Lemaire E. 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.
Bowman T., Frechette J. & Drazer G. 2012 Force driven separation of drops by deterministic lateral displacement. Lab on a Chip 12 (16), 29032908.
Brady J. F. & Morris J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348 (1), 103139.
Brenner H. & Edwards D. A. 1993 Macrotransport Processes. Butterworth-Heinemann.
Burganos V. N., Paraskeva C. A. & Payatakes A. C. 1992 Three-dimensional trajectory analysis and network simulation of deep bed filtration. J. Colloid Interface Sci. 148 (1), 167181.
Burganos V. N., Skouras E. D., Paraskeva C. A. & Payatakes A. C. 2001 Simulation of the dynamics of depth filtration of non-Brownian particles. AIChE J. 47 (4), 880894.
Chang Y.-I., Chen S.-C. & Lee E. 2003 Prediction of Brownian particle deposition in porous media using the constricted tube model. J. Colloid Interface Sci. 266 (1), 4859.
Claeys I. L. & Brady J. F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico-Chem. Hydrodyn. 11 (3), 261293.
Cox R. G. 1974 The motion of suspended particles almost in contact. Intl J. Multiphase Flow 1 (2), 343371.
da Cunha F. R. & Hinch E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.
Dabroś T. & van de Ven T. G. M. 1992 Surface collisions in a viscous fluid. J. Colloid Interface Sci. 149 (2), 493505.
Davis R. H. 1992 Effects of surface-roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Phys. Fluids 4 (12), 26072619.
Davis R. H. & Hill N. A. 1992 Hydrodynamic diffusion of a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. J. Fluid Mech. 236, 513533.
Davis R. H., Zhao Y., Galvin K. P. & Wilson H. J. 2003 Solid–solid contacts due to surface roughness and their effects on suspension behaviour. Phil. Trans. R. Soc. A 361 (1806), 871894.
Drazer G., Koplik J., Khusid B. & Acrivos A. 2002 Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J. Fluid Mech. 460, 307335.
Drazer G., Koplik J., Khusid B. & Acrivos A. 2004 Microstructure and velocity fluctuations in sheared suspensions. J. Fluid Mech. 511, 237263.
Frechette J. & Drazer G. 2009 Directional locking and deterministic separation in periodic arrays. J. Fluid Mech. 627, 379401.
Goren S. L. & O’Neill M. E. 1971 On the hydrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Eng. Sci. 26, 325338.
Gu Y. & Li D. 2002 Deposition of spherical particles onto cylindrical solid surfaces. I. Numerical simulations. J. Colloid Interface Sci. 248 (2), 315328.
Happel J. & Brenner H. 1965 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Prentice-Hall.
Herrmann J., Karweit M. & Drazer G. 2009 Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys. Rev. E 79 (6), 061404.
Hewitt G. F. & Marshall J. S. 2010 Particle focusing in a suspension flow through a corrugated tube. J. Fluid Mech. 660, 258281.
Huang L. R., Cox E. C., Austin R. H. & Sturm J. C. 2004 Continuous particle separation through deterministic lateral displacement. Science 304 (5673), 987990.
Ingber M. S., Feng S., Graham A. L. & Brenner H. 2008 The analysis of self-diffusion and migration of rough spheres in nonlinear shear flow using a traction-corrected boundary element method. J. Fluid Mech. 598, 267292.
Jeffrey D. J. & Onishi Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.
Jegatheesan V. & Vigneswaran S. 2005 Deep bed filtration: mathematical models and observations. Crit. Rev. Environ. Sci. Technol. 35 (6), 515569.
Khair A. & Brady J. F. 2006 Single particle motion in colloidal dispersions: a simple model for active and nonlinear microrheology. J. Fluid Mech. 557, 73117.
Kim S. & Karrila S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Koch D. L., Cox R. G., Brenner H. & Brady J. F 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.
Lee J. & Koplik J. 1999 Microscopic motion of particles flowing through a porous medium. Phys. Fluids 11 (1), 7687.
Li S.-Q. & Marshall J. S. 2007 Discrete element simulation of micro-particle deposition on a cylindrical fibre in an array. J. Aerosol Sci. 38 (10), 10311046.
Li Z. & Drazer G. 2007 Separation of suspended particles by arrays of obstacles in microfluidic devices. Phys. Rev. Lett. 98 (5), 050602.
Luo M., Sweeney F., Risbud S. R., Drazer G. & Frechette J. 2011 Irreversibility and pinching in deterministic particle separation. Appl. Phys. Lett. 99 (6), 064102.
Nitsche J. M. 1996 On Brownian dynamics with hydrodynamic wall effects: a problem in diffusion near a fibre, and the meaning of no-flux boundary condition. Chem. Eng. Commun. 148–150 (1), 623651.
Phillips R. J., Deen W. M. & Brady J. F. 1989 Hindered transport of spherical macromolecules in fibrous membranes and gels. AIChE J. 35 (11), 17611769.
Phillips R. J., Deen W. M. & Brady J. F. 1990 Hindered transport in fibrous membranes and gels: effect of solute size and fibre configuration. J. Colloid Interface Sci. 139 (2), 363373.
Rampall I., Smart J. R. & Leighton D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.
Ryan J. N. & Elimelech M. 1996 Colloid mobilization and transport in groundwater. Colloid Surface A 107, 156.
Shapiro M., Kettner I. J. & Brenner H. 1991 Transport mechanics and collection of submicrometre particles in fibrous filters. J. Aerosol Sci. 22 (6), 707722.
Smart J. R. & Leighton D. T. 1989 Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids A 1 (1), 5260.
Spielman L. A. 1977 Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9 (1), 297319.
van de Ven T. G. M., Warszynski P., Wu X. & Dabroś T. 1994 Colloidal particle scattering: a new method to measure surface forces. Langmuir 10 (9), 30463056.
van de Ven T. G. M. & Wu X. 1999 Characterizing the surface of latex particles with a microcollider. Colloid Surface A 153, 453458.
Whittle M., Murray B. S., Dickinson E. & Pinfield V. J. 2000 Determination of interparticle forces by colloidal particle scattering: a simulation study. J. Colloid Interface Sci. 223 (2), 273284.
Wilson H. J. & Davis R. H. 2000 The viscosity of a dilute suspension of rough spheres. J. Fluid Mech. 421, 339367.
Wu X. & van de Ven T. G. M. 1996 Characterization of hairy latex particles with colloidal particle scattering. Langmuir 12 (16), 38593865.
Xuan X., Zhu J. & Church C. 2010 Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9 (1), 116.
Yamada M., Nakashima M. & Seki M. 2004 Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Aanl. Chem. 76 (18), 54655471.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 226 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.