Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T20:24:54.225Z Has data issue: false hasContentIssue false

Transfers of energy and helicity in helical rotating turbulence

Published online by Cambridge University Press:  03 August 2022

Running Hu
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Xinliang Li
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Changping Yu*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: cpyu@imech.ac.cn

Abstract

Helical rotating turbulence is a chiral and anisotropic flow. The energy and helicity transfers of helical rotating turbulence are studied in this paper. First, we discuss the antisymmetry and conservation of energy and helicity transfers. There are three expressions for helicity transfers due to the commutability of differential operators. The first expression is derived here. The second expression violates antisymmetry, and the third one introduces non-physical effects. The relations of these expressions are discussed in detail, including those about the sum of all triads and partial triads, as well as those about helical wave decomposition. Through direct numerical simulations, we find that helicity can reduce inverse energy cascades. The inhibition is mainly associated with transhelical energy fluxes and the interactions of two-dimensional modes. The inverse cascades of decomposed energy fluxes are related to the two-dimensionalization. For helicity, rotation does not affect the total helicity flux but generally suppresses the decomposed helicity fluxes. Positive homochiral and negative heterochiral helicity fluxes are associated with corresponding positive anisotropic transfers. Notably, the transhelical helicity fluxes increase the amplitudes of both positive and negative helicity, which is related to the chirality polarization.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.10.1017/jfm.2016.831CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.10.1016/j.physrep.2018.08.001CrossRefGoogle Scholar
André, J.C. & Lesieur, M. 1977 Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81 (1), 187207.10.1017/S0022112077001979CrossRefGoogle Scholar
Bellet, F., Godeferd, F.S., Scott, J.F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.10.1017/S0022112006000929CrossRefGoogle Scholar
Berger, M.A. 1999 Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41 (12B), B167.10.1088/0741-3335/41/12B/312CrossRefGoogle Scholar
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29, 111101.10.1063/1.4990082CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.10.1103/PhysRevLett.108.164501CrossRefGoogle ScholarPubMed
Briard, A. & Gomez, T. 2017 Dynamics of helicity in homogeneous skew-isotropic turbulence. J. Fluid Mech. 821, 539581.10.1017/jfm.2017.260CrossRefGoogle Scholar
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.10.1063/1.1694520CrossRefGoogle Scholar
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 a Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3 (3), 034802.10.1103/PhysRevFluids.3.034802CrossRefGoogle Scholar
Buzzicotti, M., Di Leoni, P.C. & Biferale, L. 2018 b On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41 (11), 18.10.1140/epje/i2018-11742-4CrossRefGoogle ScholarPubMed
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202 (295), 295317.10.1017/S0022112089001199CrossRefGoogle Scholar
Chen, Q., Chen, S. & Eyink, G.L. 2003 The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15 (2), 361374.10.1063/1.1533070CrossRefGoogle Scholar
Chen, Q., Chen, S., Eyink, G.L. & Holm, D.D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.10.1017/S0022112005006324CrossRefGoogle Scholar
Cho, J.Y.K., Menou, K., Hansen, B.M.S. & Seager, S. 2008 Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations. Astrophys. J. 675 (1), 817845.10.1086/524718CrossRefGoogle Scholar
Clark Di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P. & Matthaeus, W.H. 2014 Quantification of the strength of inertial waves in a rotating turbulent flow. Phys. Fluids 26 (3), 035106.10.1063/1.4868280CrossRefGoogle Scholar
Davidson, P.A. 2010 Turbulence in Rotating, Stratified and Electrically Conducting Fluids, pp. 1681. Cambridge University Press.Google Scholar
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26 (2), 025104.10.1063/1.4864099CrossRefGoogle Scholar
Dumitrescu, H. & Cardos, V. 2004 Rotational effects on the boundary-layer flow in wind turbines. AIAA J. 42 (2), 408411.10.2514/1.9103CrossRefGoogle Scholar
Eyink, G.L. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.10.1017/S0022112005007895CrossRefGoogle Scholar
Galtier, S. 2014 Theory for helical turbulence under fast rotation. Phys. Rev. E 89 (4), 14.10.1103/PhysRevE.89.041001CrossRefGoogle ScholarPubMed
Irvine, W.T.M. 2018 Moreau's hydrodynamic helicity and the life of vortex knots and links. C. R. Méc. 346 (3), 170174.10.1016/j.crme.2017.12.006CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Kraichnan, R.H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59 (4), 745752.10.1017/S0022112073001837CrossRefGoogle Scholar
Lamriben, C., Cortet, P.-P. & Moisy, F. 2011 Direct measurements of anisotropic energy transfers in a rotating turbulence experiment. Phys. Rev. Lett. 107 (2), 024503.10.1103/PhysRevLett.107.024503CrossRefGoogle Scholar
di Leoni, P.C. & Mininni, P.D. 2016 Quantifying resonant and near-resonant interactions in rotating turbulence. J. Fluid Mech. 809, 821842.10.1017/jfm.2016.713CrossRefGoogle Scholar
Lilly, D.K. 1986 The structure, energetics and propagation of rotating convective storms. Part 2. Helicity and storm stabilization. J. Atmos. Sci. 43 (2), 126140.10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Mininni, P.D., Alexakis, A. & Pouquet, A. 2006 Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74 (1), 016303.10.1103/PhysRevE.74.016303CrossRefGoogle ScholarPubMed
Mininni, P.D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 15108.10.1063/1.3064122CrossRefGoogle Scholar
Mininni, P.D. & Pouquet, A. 2009 Helicity cascades in rotating turbulence. Phys. Rev. E 79 (2), 026304.10.1103/PhysRevE.79.026304CrossRefGoogle ScholarPubMed
Mininni, P.D. & Pouquet, A. 2010 a Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22 (3), 035105.10.1063/1.3358466CrossRefGoogle Scholar
Mininni, P.D. & Pouquet, A. 2010 b Rotating helical turbulence. II. Intermittency, scale invariance, and structures. Phys. Fluids 22 (3), 035106.10.1063/1.3358471CrossRefGoogle Scholar
Mininni, P.D., Rosenberg, D. & Pouquet, A. 2012 Isotropization at small scales of rotating helically driven turbulence. J. Fluid Mech. 699 (April), 263279.10.1017/jfm.2012.99CrossRefGoogle Scholar
Moffatt, H.K. 2018 Helicity. C. R. Méc. 346 (3), 165169.10.1016/j.crme.2017.12.002CrossRefGoogle Scholar
Morinishi, Y., Nakabayashi, K. & Ren, S. 2001 Effects of helicity and system rotation on decaying homogeneous turbulence. JSME Intl J. B 44 (3), 410418.10.1299/jsmeb.44.410CrossRefGoogle Scholar
Polifke, W. & Shtilman, L. 1989 The dynamics of helical decaying turbulence. Phys. Fluids A 1 (12), 20252033.10.1063/1.857476CrossRefGoogle Scholar
Pouquet, A. & Marino, R. 2013 Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 111, 234501.10.1103/PhysRevLett.111.234501CrossRefGoogle Scholar
Rodriguez Imazio, P. & Mininni, P.D. 2013 Passive scalar cascades in rotating helical and non-helical flows. Phys. Scr. 88 (T155), 116.Google Scholar
Sen, A., Mininni, P.D., Rosenberg, D. & Pouquet, A. 2012 Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E 86 (3), 115.10.1103/PhysRevE.86.036319CrossRefGoogle ScholarPubMed
Sharma, M.K., Verma, M.K. & Chakraborty, S. 2019 Anisotropic energy transfers in rapidly rotating turbulence. Phys. Fluids 31 (8), 085117.10.1063/1.5109856CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.10.1063/1.870022CrossRefGoogle Scholar
Teimurazov, A.S., Stepanov, R.A., Verma, M.K., Barman, S., Kumar, A. & Sadhukhan, S. 2018 Direct numerical simulation of homogeneous isotropic helical turbulence with the TARANG code. J. Appl. Mech. Tech. Phys. 59 (7), 12791287.10.1134/S0021894418070131CrossRefGoogle Scholar
Teitelbaum, T. & Mininni, P.D. 2009 Effect of helicity and rotation on the free decay of turbulent flows. Phys. Rev. Lett. 103 (1), 14.10.1103/PhysRevLett.103.014501CrossRefGoogle ScholarPubMed
Thalabard, S., Rosenberg, D., Pouquet, A. & Mininni, P.D. 2011 Conformal invariance in three-dimensional rotating turbulence. Phys. Rev. Lett. 106 (20), 14.10.1103/PhysRevLett.106.204503CrossRefGoogle ScholarPubMed
Vallefuoco, D., Naso, A. & Godeferd, F.S. 2018 Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence. J. Turbul. 19 (2), 107140.10.1080/14685248.2017.1400667CrossRefGoogle Scholar
Waleffe, F. 1992 a Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.10.1063/1.858651CrossRefGoogle Scholar
Waleffe, F. 1992 b The nature of triad interactions in homogeneous turbulence. Phys. Fluids 4 (2), 350363.10.1063/1.858309CrossRefGoogle Scholar
Yan, Z., Li, X. & Yu, C. 2020 a Scale locality of helicity cascade in physical space. Phys. Fluids 32 (6), 061705.10.1063/5.0013009CrossRefGoogle Scholar
Yan, Z., Li, X., Yu, C., Wang, J. & Chen, S. 2020 b Dual channels of helicity cascade in turbulent flows. J. Fluid Mech. 894, R2.10.1017/jfm.2020.289CrossRefGoogle Scholar
Yang, Y.-T. & Wu, J.-Z. 2012 Channel turbulence with spanwise rotation studied using helical wave decomposition. J. Fluid Mech. 692, 137152.10.1017/jfm.2011.500CrossRefGoogle Scholar
Yokoyama, N. & Takaoka, M. 2021 Energy-flux vector in anisotropic turbulence: application to rotating turbulence. J. Fluid Mech. 908, A17.10.1017/jfm.2020.860CrossRefGoogle Scholar
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.10.1063/1.868053CrossRefGoogle Scholar