Skip to main content Accessibility help

Transient energy growth in the ageostrophic Eady model

  • Varvara E. Zemskova (a1), Pierre-Yves Passaggia (a1) (a2) and Brian L. White (a1)
  • Please note a correction has been issued for this article.


The problem of optimal initial disturbances in thermal wind shear is revisited and extended to include non-hydrostatic effects. This systematic study compares transient and modal growth rates of submesoscale instabilities over a large range of zonal and meridional wavenumbers, aspect ratios and different Richardson number regimes. Selection criteria were derived to remove spurious and unresolved instability modes that arise from the eigenvalue problem and we generalize the study of the hydrostatic Eady problem by Heifetz & Farrell (J. Atmos. Sci., vol. 60, 2003; J. Atmos. Sci., vol. 64 (12), 2007, pp. 4366–4382; Q. J. R. Meteorol. Soc., vol. 134 (635), 2008, pp. 1627–1633) to thin fronts, characterized by large aspect ratios. Such fronts are commonly found at the early stages of frontogenesis, for example, in the ocean mesoscale eddies and near the eye wall of hurricanes. In particular, we show that transient energy growth rates are up to two orders of magnitude larger than modal counterparts for a wide range of Richardson number and that the effects of transient energy gain become even greater when non-hydrostatic effects become important and/or for large Richardson numbers. This study also compares the dominant energy pathways contributing to the energy growth at short and long times. For symmetric modes, we recover the inertia–gravity instability described in Xu et al. (J. Atmos. Sci., vol. 64 (6), 2007, pp. 1764–1781). These mechanisms are shown to be the most powerful mediator of vertical transport when compared with the fastest growing baroclinic and symmetric modes. These results highlight the importance of transient processes in the ocean and the atmosphere.


Corresponding author

Email address for correspondence:


Hide All
von Appen, W.-J., Wekerle, C., Hehemann, L., Schourup-Kristensen, V., Konrad, C. & Iversen, M. H. 2018 Observations of a submesoscale cyclonic filament in the marginal ice zone. Geophys. Res. Lett. 45 (12), 61416149.
Arobone, E. & Sarkar, S. 2015 Effects of three-dimensionality on instability and turbulence in a frontal zone. J. Fluid Mech. 784, 252273.
Bakas, N. A. & Farrell, B. F. 2009a Gravity waves in a horizontal shear flow. Part I: growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr. 39 (3), 481496.
Bakas, N. A. & Farrell, B. F. 2009b Gravity waves in a horizontal shear flow. Part II: interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr. 39 (3), 497511.
Boccaletti, G., Ferrari, R. & Fox-Kemper, B. 2007 Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37 (9), 22282250.
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.
Brannigan, L., Marshall, D.P., Naveira Garabato, A.C., Nurser, A.J.G. & Kaiser, J. 2017 Submesoscale instabilities in mesoscale eddies. J. Phys. Ocean. 47 (12), 30613085.
Callies, J., Ferrari, R., Klymak, J. M. & Gula, J. 2015 Seasonality in submesoscale turbulence. Nat. Comm. 6, 6862.
Chandrasekhar, S. 1961 Hydromagnetic and Hydrodynamic Stability. Clarendon.
Drobinski, P. & Foster, R. C. 2003 On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Boundary-Layer Meteorol. 108 (2), 247256.
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.
Ellis, R. & Businger, S. 2010 Helical circulations in the typhoon boundary layer. J. Geophys. Res. 115 (D6), D06205.
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31 (8), 20932102.
Farrell, B. F. & Ioannou, P. J. 1993a Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A 5 (6), 13901400.
Farrell, B. F. & Ioannou, P. J. 1993b Stochastic dynamics of baroclinic waves. J. Atmos. Sci. 50 (24), 40444057.
Farrell, B. F. & Ioannou, P. J. 1993c Stochastic forcing of perturbation variance in unbounded shear and deformation flows. J. Atmos. Sci. 50 (2), 200211.
Foster, R. 2013 Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones. Oceanography 26 (2), 5867.
Gardner, D. R., Trogdon, S. A. & Douglass, R. W. 1989 A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80 (1), 137167.
Gary, J. & Helgason, R. 1970 A matrix method for ordinary differential eigenvalue problems. J. Comput. Phys. 5 (2), 169187.
Gnanadesikan, A., Slater, R. D., Swathi, P. & Vallis, G. K. 2005 The energetics of ocean heat transport. J. Clim. 18 (14), 26042616.
Grisouard, N. 2018 Extraction of potential energy from geostrophic fronts by inertial-symmetric instabilities. J. Phys. Oceanogr. 48 (5), 10331051.
Grisouard, N. & Thomas, L. N. 2015 Critical and near-critical reflections of near-inertial waves off the sea surface at ocean fronts. J. Fluid Mech. 765, 273302.
Grisouard, N. & Thomas, L. N. 2016 Energy exchanges between density fronts and near-inertial waves reflecting off the ocean surface. J. Phys. Oceanogr. 46 (2), 501516.
Heifetz, E. & Farrell, B. 2003 Generalized stability of nongeostrophic baroclinic shear flow. Part I: large Richardson number regime. J. Atmos. Sci. 60, 20832100.
Heifetz, E. & Farrell, B. F. 2007 Generalized stability of nongeostrophic baroclinic shear flow. Part II: intermediate Richardson number regime. J. Atmos. Sci. 64 (12), 43664382.
Heifetz, E. & Farrell, B. F. 2008 Non-normal growth in symmetric shear flow. Q. J. R. Meteorol. Soc. 134 (635), 16271633.
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7 (2), 157167.
Manning, M. L., Bamieh, B. & Carlson, J.2007 Descriptor approach for eliminating spurious eigenvalues in hydrodynamic equations. arXiv:0705.1542.
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2005 Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35 (9), 15051517.
Morrison, I., Businger, S., Marks, F., Dodge, P. & Businger, J. A. 2005 An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci. 62 (8), 26622673.
Nakamura, N. 1988 Scale selection of baroclinic instability – effects of stratification and nongeostrophy. J. Atmos. Sci. 45 (21), 32533268.
Nolan, D. S., Dahl, N. A., Bryan, G. H. & Rotunno, R. 2017 Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. J. Atmos. Sci. 74 (5), 15731597.
Omand, M. M., DAsaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I. & Mahadevan, A. 2015 Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348 (6231), 222225.
Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Proc. R. Irish Acad. Sec. A 27, 968.
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.
Park, J., Billant, P. & Baik, J.-J. 2017 Instabilities and transient growth of the stratified Taylor–Couette flow in a Rayleigh-unstable regime. J. Fluid Mech. 822, 80108.
Passaggia, P.-Y. & Ehrenstein, U. 2013 Adjoint based optimization and control of a separated boundary-layer flow. Eur. J. Mech. (B/Fluids) 41, 169177.
Passaggia, P.-Y., Meunier, P. & Le Dizès, S. 2014 Response of a stratified boundary layer on a tilted wall to surface undulations. J. Fluid Mech. 751, 663684.
Passaggia, P.-Y., Scotti, A. & White, B. 2017 Transition and turbulence in horizontal convection: linear stability analysis. J. Fluid Mech. 821, 3158.
Ramachandran, S., Tandon, A., Mackinnon, J., Lucas, A. J., Pinkel, R., Waterhouse, A. F., Nash, J., Shroyer, E., Mahadevan, A., Weller, R. A. et al. 2018 Submesoscale processes at shallow salinity fronts in the Bay of Bengal: observations during the winter monsoon. J. Phys. Oceanogr. 48 (3), 479509.
Sarkar, S., Pham, H. T., Ramachandran, S., Nash, J. D., Tandon, A., Buckley, J., Lotliker, A. A. & Omand, M. M. 2016 The interplay between submesoscale instabilities and turbulence in the surface layer of the bay of bengal. Oceanography 29 (2), 146157.
Schmid, P. J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity: lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024803.
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media.
Scotti, A. & Passaggia, P.-Y. 2019 Diagnosing diabatic effects on the available energy of stratified flows in inertial and non-inertial frames. J. Fluid Mech. 861, 608642.
Solberg, H. 1936 Le mouvement dinertie de latmosphere stable et son role dans la theorie des cyclones. In Proces-Verbaux des séances de lUnion International de Géodésie et Géophysique (IUGG), pp. 6682. IUGG.
Stamper, M. A. & Taylor, J. R. 2017 The transition from symmetric to baroclinic instability in the Eady model. Ocean Dyn. 67 (1), 6580.
Stone, P. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23, 390400.
Stone, P. 1970 On non-geostrophic baroclinic stability: part II. J. Atmos. Sci. 27, 721726.
Stone, P. 1971 Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech. 45, 659671.
Taylor, J. R. & Ferrari, R. 2009 On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622, 103113.
Taylor, J. R. & Ferrari, R. 2010 Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr. 40 (6), 12221242.
Taylor, J. R. & Ferrari, R. 2011 Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr. 56 (6), 22932307.
Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. 2013 Symmetric instability in the gulf stream. Deep-Sea Res. 91, 96110.
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Vasavada, A. R. & Showman, A. P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68 (8), 1935.
Walters, R. A. & Carey, G. F. 1983 Analysis of spurious oscillation modes for the shallow water and Navier–Stokes equations. Comput. Fluids 11 (1), 5168.
Wolfe, C., Cessi, P., McClean, J. & Maltrud, M. 2008 Vertical heat transport in eddying ocean models. Geophys. Res. Lett. 35 (23), L23605.
Worsnop, R. P., Lundquist, J. K., Bryan, G. H., Damiani, R. & Musial, W. 2017 Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards. Geophys. Res. Lett. 44 (12), 64136420.
Xu, Q. 2007 Modal and nonmodal symmetric perturbations. Part I: completeness of normal modes and constructions of nonmodal solutions. J. Atmos. Sci. 64 (6), 17451763.
Xu, Q., Lei, T. & Gao, S. 2007 Modal and nonmodal symmetric perturbations. Part II: nonmodal growths measured by total perturbation energy. J. Atmos. Sci. 64 (6), 17641781.
Young, W. 1994 The subinertial mixed layer approximation. J. Phys. Oceanogr. 24 (8), 18121826.
Zemskova, V. E., White, B. L. & Scotti, A. 2015 Available potential energy and the general circulation: partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr. 45 (6), 15101531.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Transient energy growth in the ageostrophic Eady model

  • Varvara E. Zemskova (a1), Pierre-Yves Passaggia (a1) (a2) and Brian L. White (a1)
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: