Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-20T08:16:20.121Z Has data issue: false hasContentIssue false

Transition of large-scale circulation in thermal convection driven by heat-releasing particles

Published online by Cambridge University Press:  18 September 2025

Liang-Bing Chen
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Zi-Mo Liao
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Fenghui Lin
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Zhenhua Wan
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
An-Kang Gao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Nan-Sheng Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
*
Corresponding authors: Nan-Sheng Liu, lns@ustc.edu.cn; An-Kang Gao, ankanggao@ustc.edu.cn
Corresponding authors: Nan-Sheng Liu, lns@ustc.edu.cn; An-Kang Gao, ankanggao@ustc.edu.cn

Abstract

Large-scale circulation (LSC) dynamics have been studied in thermal convection driven by heat-releasing particles via the four-way coupled Euler–Lagrange approach. We consider a wide range of Rayleigh–Robert number (${\textit{Rr}}=4.97\times 10^{5} - 4.97 \times 10^{8}$) and density ratio ($\hat {\rho }_r=1- 1000$) that characterize the thermal buoyancy and the particle inertia, respectively. An intriguing flow transition has been found as $\hat {\rho }_r$ continuously increases, involving in sequence three typical LSC regimes, i.e. the bulk-flow-up regime, the marginal regime and the bulk-flow-down (BFD) regime. The comprehensive influence of the LSC regime transition is demonstrated by examining the key flow statistics. As integral flow responses, the heat transfer efficiency and flow intensity change substantially when the LSC regime transition happens, and the thermal boundary layer thicknesses at the top and bottom walls exhibit similar alterations. Significant local accumulation of particles occurs as $\hat {\rho }_r$ increases to a sufficiently high value, resulting in a great modification in the flow dynamics. Specifically, particles aggregate near the sidewalls and heat the local surrounding fluid to generate rising warmer plumes that drive the LSC regime transition. Of interest, well-patterned cellular structures of particles take place near the top wall and obtain notable deviation from the thermal convection cells for the BFD regimes. A mechanical interpretation is proposed and substantiated based on a conceptual vortex–particle model, namely, the centrifugal motion of heat-releasing particles that is confirmed to play a driving role for the LSC regime transition.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ai, J., Chen, J.-F., Rotter, J.M. & Ooi, J.Y. 2011 Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206 (3), 269282.10.1016/j.powtec.2010.09.030CrossRefGoogle Scholar
Alards, K.M.J., Kunnen, R.P.J., Clercx, H.J.H. & Toschi, F. 2019 Statistical properties of thermally expandable particles in soft-turbulence Rayleigh–Bénard convection. Eur. Phys. J. E 42 (9), 126.10.1140/epje/i2019-11882-yCrossRefGoogle ScholarPubMed
Banko, A.J., Villafañe, L., Kim, J.H. & Eaton, J.K. 2020 Temperature statistics in a radiatively heated particle-laden turbulent square duct flow. Intl J. Heat Fluid Flow 84, 108618.10.1016/j.ijheatfluidflow.2020.108618CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.10.1146/annurev.fluid.32.1.709CrossRefGoogle Scholar
Bodhisattwa, C., Fernando, J.M. & Silvina, M.T. 2006 Modeling of heat transfer in granular flow in rotating vessels. Chem. Engng Sci. 61 (19), 63486360.Google Scholar
Bouillaut, V., Lepot, S., Aumaître, S. & Gallet, B. 2019 Transition to the ultimate regime in a radiatively driven convection experiment. J. Fluid Mech. 861 , R5.10.1017/jfm.2018.972CrossRefGoogle Scholar
Brilliantov, N.V., Spahn, F., Hertzsch, J. & Pöschel, T. 1996 Model for collisions in granular gases. Phys. Rev. E 53, 53825392.10.1103/PhysRevE.53.5382CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.10.1103/PhysRevLett.98.134501CrossRefGoogle ScholarPubMed
Busse, F.H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41 (12), 1929.10.1088/0034-4885/41/12/003CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82 (3-4), 235259.10.1016/0031-9201(94)90075-2CrossRefGoogle Scholar
Chen, L., Gao, A.-K., Liao, Z.-M., Wan, Z.-H. & Liu, N. 2024 Temperature and heat flux bounds of convection driven by non-uniform internal heating. Acta Mechanica Sin. 40, 323630.10.1007/s10409-024-23630-xCrossRefGoogle Scholar
Chen, X., Xu, A., Xia, K.-Q. & Xi, H.-D. 2023 The effect of the cell tilting on the temperature oscillation in turbulent Rayleigh–Bénard convection. Phys. Fluids 35 (8), 085141.10.1063/5.0165069CrossRefGoogle Scholar
Chong, K.-L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3, 013501.10.1103/PhysRevFluids.3.013501CrossRefGoogle Scholar
Creyssels, M. 2021 Model for thermal convection with uniform volumetric energy sources. J. Fluid Mech. 919, A13.10.1017/jfm.2021.392CrossRefGoogle Scholar
Du, Y. & Yang, Y. 2022 Wall-bounded thermal turbulent convection driven by heat-releasing point particles. J. Fluid Mech. 953, A41.10.1017/jfm.2022.983CrossRefGoogle Scholar
Du, Y. & Yang, Y. 2023 Effects of the gravitational force on the convection turbulence driven by heat-releasing point particles. Phys. Fluids 35 (7), 075142.10.1063/5.0158055CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55 (1), 603638.10.1146/annurev-fluid-120720-020446CrossRefGoogle Scholar
Frankel, A., Pouransari, H., Coletti, F. & Mani, A. 2016 Settling of heated particles in homogeneous turbulence. J. Fluid Mech. 792, 869893.10.1017/jfm.2016.102CrossRefGoogle Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 607, 119139.10.1017/S0022112008001882CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aurnou, J.M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.10.1017/jfm.2015.401CrossRefGoogle Scholar
Gereltbyamba, B. & Lee, C. 2019 Flow modification by inertial particles in a differentially heated cubic cavity. Intl J. Heat Fluid Flow 79, 108445.10.1016/j.ijheatfluidflow.2019.108445CrossRefGoogle Scholar
Goluskin, D. 2016 Internally Heated Convection and Rayleigh–Bénard Convection. Springer.10.1007/978-3-319-23941-5CrossRefGoogle Scholar
Goluskin, D. & Van der Poel, E.P. 2016 Penetrative internally heated convection in two and three dimensions. J. Fluid Mech. 791, R6.10.1017/jfm.2016.69CrossRefGoogle Scholar
Goluskin, D. & Spiegel, E.A. 2012 Convection driven by internal heating. Phys. Lett. A 377 (1-2), 8392.10.1016/j.physleta.2012.10.037CrossRefGoogle Scholar
Hager, A., Kloss, C., Pirker, S. & Goniva, C. 2014 Parallel resolved open source CFD-DEM: method, validation and application. J. Comput. Multiphase Flows 6 (1), 1327.10.1260/1757-482X.6.1.13CrossRefGoogle Scholar
Hartmann, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14 (24), 44954511.10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Hu, S.Y., Wang, K.Z., Jia, L.B., Zhong, J.Q. & Zhang, J. 2021 Enhanced heat transport in thermal convection with suspensions of rod-like expandable particles. J. Fluid Mech. 928, R1.10.1017/jfm.2021.809CrossRefGoogle Scholar
Jasak, H. 2009 OpenFOAM: open source CFD in research and industry. Intl J. Nav. Archit. Ocean Engng 1 (2), 8994.Google Scholar
Jasak, H., Jemcov, A. & Tukovic, Z. 2007 Openfoam: a c++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 120. Dubrovnik.Google Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12 (2-3), 140152.10.1504/PCFD.2012.047457CrossRefGoogle Scholar
Kuerten, Jv, Van der Geld, C. & Geurts, B.J. 2011 Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 23 (12), 123301.10.1063/1.3663308CrossRefGoogle Scholar
Kuznetsov, A.V. & Nield, D.A. 2016 The effect of spatially nonuniform internal heating on the onset of convection in a horizontal fluid layer. J. Heat Transfer 138 (6), 062503.10.1115/1.4032837CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.10.1063/1.4908277CrossRefGoogle Scholar
Li, J. & Mason, D.J. 2000 A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol. 112 (3), 273282.10.1016/S0032-5910(00)00302-8CrossRefGoogle Scholar
Li, Y., Xu, Y. & Thornton, C. 2005 A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160 (3), 219228.10.1016/j.powtec.2005.09.002CrossRefGoogle Scholar
Liao, Z.-M., Chen, L., Wan, Z.-H., Liu, N. & Lu, X.-Y. 2024 GPU acceleration of four-way coupled PP-DNS for compressible particle-laden wall turbulence. Intl J. Multiphase Flow 176, 104840.10.1016/j.ijmultiphaseflow.2024.104840CrossRefGoogle Scholar
Ling, Y., Balachandar, S. & Parmar, M. 2016 Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys. Fluids 28 (3), 033304.10.1063/1.4942184CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.10.1146/annurev.fluid.010908.165152CrossRefGoogle Scholar
Lube, G., Breard, E.C.P., Esposti-Ongaro, T., Dufek, J. & Brand, B. 2020 Multiphase flow behavior and hazard prediction of pyroclastic density currents. Nat. Rev. Earth Environ. 1 (7), 348365.10.1038/s43017-020-0064-8CrossRefGoogle Scholar
Mamykin, A.D., Kolesnichenko, I.V., Pavlinov, A.M. & Khalilov, R.I. 2018 Large scale circulation in turbulent Rayleigh–Bénard convection of liquid sodium in cylindrical cell. J. Phys.: Conf. Ser. 1128 (1), 012019.Google Scholar
Martys, N.S. & Mountain, R.D. 1999 Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59 (3), 3733.10.1103/PhysRevE.59.3733CrossRefGoogle Scholar
Metzger, J.P., Strässle, R.M., Girardin, L., Conzelmann, N.A. & Müller, C.R. 2022 On the rising and sinking of granular bubbles and droplets. J. Fluid Mech. 945, A16.10.1017/jfm.2022.548CrossRefGoogle Scholar
Mubin, S., Li, J.-C. & Plimpton, S. 2021 Extending and Modifying LAMMPS Writing Your Own Source Code: A Pragmatic Guide to Extending LAMMPS as Per Custom Simulation Requirements. Packt Publishing Ltd.Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.10.1017/jfm.2015.433CrossRefGoogle Scholar
Oresta, P. & Prosperetti, A. 2013 Effects of particle settling on Rayleigh–Bénard convection. Phys. Rev. E 87 (6), 063014.10.1103/PhysRevE.87.063014CrossRefGoogle ScholarPubMed
Pan, M., Dong, Y., Zhou, Q. & Shen, L. 2022 Flow modulation and heat transport of radiatively heated particles settling in Rayleigh–Bénard convection. Comput. Fluids 241, 105454.10.1016/j.compfluid.2022.105454CrossRefGoogle Scholar
Patočka, V., Tosi, N. & Calzavarini, E. 2022 Residence time of inertial particles in 3D thermal convection: implications for magma reservoirs. Earth Planet. Sci. Lett. 591, 117622.10.1016/j.epsl.2022.117622CrossRefGoogle Scholar
Pouransari, H. & Mani, A. 2018 Particle-to-fluid heat transfer in particle-laden turbulence. Phys. Rev. Fluids 3 (7), 074304.10.1103/PhysRevFluids.3.074304CrossRefGoogle Scholar
Prakhar, S. & Prosperetti, A. 2021 Linear theory of particulate Rayleigh–Bénard instability. Phys. Rev. Fluids 6 (8), 083901.10.1103/PhysRevFluids.6.083901CrossRefGoogle Scholar
Qiu, X.L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64 (3), 036304.10.1103/PhysRevE.64.036304CrossRefGoogle ScholarPubMed
Rahmani, M., Geraci, G., Iaccarino, G. & Mani, A. 2018 Effects of particle polydispersity on radiative heat transfer in particle-laden turbulent flows. Intl J. Multiphase Flow 104, 4259.10.1016/j.ijmultiphaseflow.2018.03.011CrossRefGoogle Scholar
Rahmstorf, S. 2000 The thermohaline ocean circulation: a system with dangerous thresholds? Clim. Change 46 (3), 247256.10.1023/A:1005648404783CrossRefGoogle Scholar
Ranz, W.E. & Marshall, W.R. 1952 a Evaporation from drops. Part i. Chem. Engng Prog. 48, 141146.Google Scholar
Ranz, W.E. & Marshall, W.R. 1952b Evaporation from drops. Part ii. Chem. Engng Prog. 48, 173180.Google Scholar
Schmeeckle, M.W. 2014 Numerical simulation of turbulence and sediment transport of medium sand. J. Geophy. Res: Earth Surf. 119 (6), 12401262.10.1002/2013JF002911CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.10.1146/annurev.fluid.35.101101.161125CrossRefGoogle Scholar
Shishkina, O., Stevens, R.J., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.10.1088/1367-2630/12/7/075022CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids 3 (5), 11691178.10.1063/1.858045CrossRefGoogle Scholar
Sreenivasan, K.R., Bershadskii, A. & Niemela, J.J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65 (5), 056306.10.1103/PhysRevE.65.056306CrossRefGoogle Scholar
Stevens, R.J.A.M., Zhong, J.-Q., Clercx, H.J.H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.10.1103/PhysRevLett.103.024503CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.10.1017/S0022112009992461CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.10.1017/S0022112009008027CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R.J., Chan, T.-S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.10.1103/PhysRevLett.105.034503CrossRefGoogle ScholarPubMed
Tasaka, Y. & Takeda, Y. 2005 Effects of heat source distribution on natural convection induced by internal heating. Intl J. Heat Mass Transfer 48 (6), 11641174.10.1016/j.ijheatmasstransfer.2004.09.044CrossRefGoogle Scholar
Tom, J. & Bragg, A.D. 2019 Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871, 244270.10.1017/jfm.2019.337CrossRefGoogle Scholar
Wang, Q., Lohse, D. & Shishkina, O. 2021 Scaling in internally heated convection: a unifying theory. Geophy. Res. Lett. 48 (4), e2020GL091198.10.1029/2020GL091198CrossRefGoogle Scholar
Wang, Q., Verzicco, R., Lohse, D. & Shishkina, O. 2020 a Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125 (7), 074501.10.1103/PhysRevLett.125.074501CrossRefGoogle ScholarPubMed
Wang, Q., Wan, Z.-H., Yan, R. & Sun, D.-J. 2018 a Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios. Phys. Rev. Fluids 3 (11), 113503.10.1103/PhysRevFluids.3.113503CrossRefGoogle Scholar
Wang, Q., Xu, B.-L., Xia, S.-N., Wan, Z.-H. & Sun, D.-J. 2017 Thermal convection in a tilted rectangular cell with aspect ratio 0.5. Chin. Phys. Lett. 34 (10), 5255.10.1088/0256-307X/34/10/104401CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 b Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), 7480.10.1126/sciadv.aat7480CrossRefGoogle ScholarPubMed
Wang, Z.-H., Chen, X., Xu, A. & Xi, H.-D. 2024 a Prandtl number dependence of flow topology in quasi-two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 991, A14.10.1017/jfm.2024.550CrossRefGoogle Scholar
Wang, Z.-H., Chen, X., Xu, A. & Xi, H.-D. 2024 b Prandtl number dependence of flow topology in quasi-two-dimensional turbulent rayleigh–Bénard convection. J. Fluid Mech. 991, A14.10.1017/jfm.2024.550CrossRefGoogle Scholar
Wang, Z.Q., Mathai, V. & Sun, C. 2019 Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10 (1), 3333.10.1038/s41467-019-11221-wCrossRefGoogle ScholarPubMed
Wang, Z.Q., Mathai, V. & Sun, C. 2020 b Experimental study of the heat transfer properties of self-sustained biphasic thermally driven turbulence. Intl J. Heat Mass Transfer 152, 119515.10.1016/j.ijheatmasstransfer.2020.119515CrossRefGoogle Scholar
Wei, P. 2021 The persistence of large-scale circulation in Rayleigh–Bénard convection. J. Fluid Mech. 924, A28.10.1017/jfm.2021.619CrossRefGoogle Scholar
Wondrak, T., Sieger, M., Mitra, R., Schindler, F., Stefani, F., Vogt, T. & Eckert, S. 2023 Three-dimensional flow structures in turbulent Rayleigh–Bénard convection at low Prandtl number Pr = 0.03. J. Fluid Mech. 974, A48.10.1017/jfm.2023.794CrossRefGoogle Scholar
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.10.1103/PhysRevE.73.056312CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2011 How heat transfer efficiencies in turbulent thermal convection depend on internal flow modes. J. Fluid Mech. 676, 14.10.1017/jfm.2011.50CrossRefGoogle Scholar
Xie, J., Hu, P., Zhu, C., Yu, Z. & Pähtz, T. 2023 a Turbidity currents propagating down an inclined slope: particle auto-suspension. J. Fluid Mech. 954, A44.10.1017/jfm.2022.1041CrossRefGoogle Scholar
Xie, J., Zhu, C., Hu, P., Yu, Z. & Pan, D. 2023 b Particle segregation within bidisperse turbidity current evolution. J. Fluid Mech. 971 , A16.10.1017/jfm.2023.623CrossRefGoogle Scholar
Xu, A., Chen, X., Wang, F. & Xi, H.-D. 2020 Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (10), 105112.10.1063/5.0024408CrossRefGoogle Scholar
Xu, A., Xu, B.-R., Jiang, L.-S. & Xi, H.-D. 2022 Production and transport of vorticity in two-dimensional Rayleigh–Bénard convection cell. Phys. Fluids 34 (1), 013609.10.1063/5.0072873CrossRefGoogle Scholar
Xu, A., Xu, B.-R. & Xi, H.-D. 2024 Particle transport and deposition in wall-sheared thermal turbulence. J. Fluid Mech. 999, A15.10.1017/jfm.2024.936CrossRefGoogle Scholar
Yang, W., Wan, Z.-H., Zhou, Q. & Dong, Y. 2022 a On the energy transport and heat transfer efficiency in radiatively heated particle-laden Rayleigh–Bénard convection. J. Fluid Mech. 953, A35.10.1017/jfm.2022.978CrossRefGoogle Scholar
Yang, W., Zhang, Y.-Z., Wang, B.-F., Dong, Y. & Zhou, Q. 2022 b Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles. J. Fluid Mech. 930, A24.10.1017/jfm.2021.922CrossRefGoogle Scholar
Zamansky, R., Coletti, F., Massot, M. & Mani, A. 2014 Radiation induces turbulence in particle-laden fluids. Phys. Fluids 26 (7), 071701.10.1063/1.4890296CrossRefGoogle Scholar
Zamansky, R., Coletti, F., Massot, M. & Mani, A. 2016 Turbulent thermal convection driven by heated inertial particles. J. Fluid Mech. 809, 390437.10.1017/jfm.2016.630CrossRefGoogle Scholar
Zhu, H.-P., Zhou, Z.-Y., Yang, R.-Y. & Yu, A.-B. 2007 a Discrete particle simulation of particulate systems: theoretical developments. Chem. Engng Sci. 62 (13), 33783396.10.1016/j.ces.2006.12.089CrossRefGoogle Scholar
Zhu, H.-P., Zhou, Z.-Y., Yang, R.-Y. & Yu, A.-B. 2007 b Discrete particle simulation of particulate systems: theoretical developments. Chem. Engng Sci. 62 (13), 33783396.10.1016/j.ces.2006.12.089CrossRefGoogle Scholar
Zonta, F., Marchioli, C. & Soldati, A. 2008 Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mechanica 195, 305326.10.1007/s00707-007-0552-7CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary movies 1

the density ratio $\rho_r = 1$ ;
Download Chen et al. supplementary movies 1(File)
File 5.4 MB
Supplementary material: File

Chen et al. supplementary movies 2

$\rho_r = 10$ ;
Download Chen et al. supplementary movies 2(File)
File 6 MB
Supplementary material: File

Chen et al. supplementary movies 3

$\rho_r = 50$ ;
Download Chen et al. supplementary movies 3(File)
File 8 MB
Supplementary material: File

Chen et al. supplementary movies 4

$\rho_r = 250$ ;
Download Chen et al. supplementary movies 4(File)
File 8.2 MB