Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-21T19:28:24.789Z Has data issue: false hasContentIssue false

Transition regimes of gravity current: from salinity-driven to particle-driven

Published online by Cambridge University Press:  30 July 2025

Jiafeng Xie
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Dingyi Pan*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, PR China
*
Corresponding author: Dingyi Pan, dpan@zju.edu.cn

Abstract

The relationship between salinity-driven (SD) and particle-driven (PD) gravity currents has long been a focal point of geophysical research. This study investigates salinity–particle dual-driven gravity currents using a direct numerical simulation discrete element method. The transition regime from SD to PD currents is explored. The results show that the transition is related to interfacial instability and material transport dynamics. During this transition, the enhancement of particle sedimentation weakens the interfacial stratification and heightens its susceptibility to shear instability. Consequently, the instability generates a series of billows that encourages fluid dilution, further amplifying the particle sedimentation effect. The transition regime is closely associated with this positive closed-loop feedback mechanism. It supplies sufficient energy at the slumping stage to maintain the front velocity of particle-dominated currents comparable to that of salinity-dominated currents. The interfacial vortices will expand spatially by the centrifugal forces on the particles, leading to a reduction in detrainment.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arthur, R.S. & Fringer, O.B. 2014 The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech. 761, 360398.10.1017/jfm.2014.641CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point–particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35 (9), 801810.10.1016/j.ijmultiphaseflow.2009.02.013CrossRefGoogle Scholar
Birman, V.K., Martin, J.E. & Meiburg, E. 2005 The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations. J. Fluid Mech. 537, 125144.10.1017/S0022112005005033CrossRefGoogle Scholar
Blanchette, F. 2013 Mixing and convection driven by particles settling in temperature-stratified ambients. Intl J. Heat Mass Transfer 56 (1-2), 732740.10.1016/j.ijheatmasstransfer.2012.09.042CrossRefGoogle Scholar
Bonnecaze, R.T., Huppert, H.E. & Lister, J.R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.10.1017/S002211209300148XCrossRefGoogle Scholar
Bonometti, T. & Balachandar, S. 2008 Effect of Schmidt number on the structure and propagation of density currents. Theor. Comput. Fluid Dyn. 22 (5), 341361.10.1007/s00162-008-0085-2CrossRefGoogle Scholar
Böttner, C., Stevenson, C.J., Englert, R., Schönke, M., Pandolpho, B.T., Geersen, J., Feldens, P. & Krastel, S. 2024 Extreme erosion and bulking in a giant submarine gravity flow. Sci. Adv. 10 (34), eadp2584.10.1126/sciadv.adp2584CrossRefGoogle Scholar
van den Bremer, T S. & Hunt, G R. 2014 Two-dimensional planar plumes and fountains. J. Fluid Mech. 750, 210244.10.1017/jfm.2014.246CrossRefGoogle Scholar
Cantero, M.I., Balachandar, S. & García, M.H. 2008 An Eulerian–Eulerian model for gravity currents driven by inertial particles. Intl J. Multiphase Flow 34 (5), 484501.10.1016/j.ijmultiphaseflow.2007.09.006CrossRefGoogle Scholar
Cantero, M.I., Lee, J.R., Balachandar, S. & Garcia, M.H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.10.1017/S0022112007005769CrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53 (1), 113145.10.1146/annurev-fluid-042320-100458CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.10.1680/geot.1979.29.1.47CrossRefGoogle Scholar
Dai, A. 2014 Non-Boussinesq gravity currents propagating on different bottom slopes. J. Fluid Mech. 741, 658680.10.1017/jfm.2014.5CrossRefGoogle Scholar
Deepwell, D. & Sutherland, B.R. 2022 Cluster formation during particle settling in stratified fluid. Phys. Rev. Fluids 7 (1), 014302.10.1103/PhysRevFluids.7.014302CrossRefGoogle Scholar
Doostmohammadi, A. & Ardekani, A.M. 2015 Suspension of solid particles in a density stratified fluid. Phys. Fluids 27 (2), 023302.10.1063/1.4907875CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2015 High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents. Phys. Fluids 27 (5), 056604.10.1063/1.4921191CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2014 Two-and three-dimensional direct numerical simulation of particle-laden gravity currents. Comput. Geosci. 63, 916.10.1016/j.cageo.2013.10.006CrossRefGoogle Scholar
Francisco, E.P., Espath, L.F.R. & Silvestrini, J.H. 2017 Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration. Appl. Math. Model. 49, 739752.10.1016/j.apm.2017.02.051CrossRefGoogle Scholar
Gadal, C., Mercier, M.J., Rastello, M. & Lacaze, L. 2023 Slumping regime in lock-release turbidity currents. J. Fluid Mech. 974, A4.10.1017/jfm.2023.762CrossRefGoogle Scholar
Gladstone, C. & Woods, A.W. 2000 On the application of box models to particle-driven gravity currents. J. Fluid Mech. 416, 187195.10.1017/S0022112000008879CrossRefGoogle Scholar
Härtel, C., Kleiser, L., Michaud, M. & Stein, C.F. 1997 A direct numerical simulation approach to the study of intrusion fronts. J. Engng Maths 32 (2/3), 103120.10.1023/A:1004215331070CrossRefGoogle Scholar
Härtel, C., Meiburg, E. & Necker, F. 2000 Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189212.10.1017/S0022112000001221CrossRefGoogle Scholar
He, Z., Zhao, L., Hu, P., Yu, C. & Lin, Y.-T. 2018 Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Adv. Water Resour. 119, 164177.10.1016/j.advwatres.2018.07.008CrossRefGoogle Scholar
He, Z., Zhao, L., Zhu, R. & Hu, P. 2019 Separation of particle-laden gravity currents down a slope in linearly stratified environments. Phys. Fluids 31 (10), 106602.10.1063/1.5116067CrossRefGoogle Scholar
Huang, H., Imran, J. & Pirmez, C. 2008 Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. J. Hydraul. Engng 134 (9), 11991209.10.1061/(ASCE)0733-9429(2008)134:9(1199)CrossRefGoogle Scholar
Huppert, H.E. & Simpson, J.E. 1980 The slumping of gravity currents. J. Fluid Mech. 99 (4), 785799.10.1017/S0022112080000894CrossRefGoogle Scholar
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2019 Flow regimes and dynamic similarity of immersed granular collapse: a CFD-DEM investigation. Powder Technol. 345, 532543.10.1016/j.powtec.2019.01.029CrossRefGoogle Scholar
Kneller, B., Nasr-Azadani, M.M., Radhakrishnan, S. & Meiburg, E. 2016 Long-range sediment transport in the world’s oceans by stably stratified turbidity currents. J. Geophys. Res.: Oceans 121 (12), 86088620.10.1002/2016JC011978CrossRefGoogle Scholar
Lu, Y., Liu, X., Xie, X., Sun, J., Yang, Y. & Guo, X. 2024 Particle-scale analysis on dynamic response of turbidity currents to sediment concentration and bedforms. Phys. Fluids 36 (3), 033316.10.1063/5.0191219CrossRefGoogle Scholar
Magnaudet, J. & Mercier, M.J. 2020 Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 52 (1), 6191.10.1146/annurev-fluid-010719-060139CrossRefGoogle Scholar
Marshall, C.R., Dorrell, R.M., Dutta, S., Keevil, G.M., Peakall, J. & Tobias, S.M. 2021 The effect of Schmidt number on gravity current flows: the formation of large-scale three-dimensional structures. Phys. Fluids 33 (10), 106601.10.1063/5.0064386CrossRefGoogle Scholar
Meiburg, E., Radhakrishnan, S. & Nasr-Azadani, M. 2015 Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 67 (4), 040802.10.1115/1.4031040CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2023 Motion in stratified fluids. Annu. Rev. Fluid Mech. 55 (1), 157192.10.1146/annurev-fluid-120720-011132CrossRefGoogle Scholar
Nasr-Azadani, M.M. & Meiburg, E. 2014 Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid Mech. 745, 409443.10.1017/jfm.2014.47CrossRefGoogle Scholar
Nasr-Azadani, M.M., Meiburg, E. & Kneller, B. 2018 Mixing dynamics of turbidity currents interacting with complex seafloor topography. Environ. Fluid Mech. 18 (1), 201223.10.1007/s10652-016-9477-9CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2002 High-resolution simulations of particle-driven gravity currents. Intl J. Multiphase Flow 28 (2), 279300.10.1016/S0301-9322(01)00065-9CrossRefGoogle Scholar
Necker, F., Härtel, C., Kleiser, L. & Meiburg, E. 2005 Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech. 545, 339372.10.1017/S0022112005006932CrossRefGoogle Scholar
Ooi, S.K., Constantinescu, G. & Weber, L. 2009 Numerical simulations of lock-exchange compositional gravity current. J. Fluid Mech. 635, 361388.10.1017/S0022112009007599CrossRefGoogle Scholar
Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F. & Armenio, V. 2016 Mixing in lock-release gravity currents propagating up a slope. Phys. Fluids 28 (5), 056604.10.1063/1.4948760CrossRefGoogle Scholar
Parker, D.A., Burridge, H.C., Partridge, J.L. & Linden, P.F. 2020 A comparison of entrainment in turbulent line plumes adjacent to and distant from a vertical wall. J. Fluid Mech. 882, A4.10.1017/jfm.2019.790CrossRefGoogle Scholar
Parker, G., Fukushima, Y. & Pantin, H.M. 1986 Self-accelerating turbidity currents. J. Fluid Mech. 171, 145181.10.1017/S0022112086001404CrossRefGoogle Scholar
Pelmard, Joë, Norris, S. & Friedrich, H. 2020 Statistical characterisation of turbulence for an unsteady gravity current. J. Fluid Mech. 901, A7.10.1017/jfm.2020.528CrossRefGoogle Scholar
Richardson, J. & Hunt, G.R. 2022 What is the entrainment coefficient of a pure turbulent line plume? J. Fluid Mech. 934, A11.10.1017/jfm.2021.1070CrossRefGoogle Scholar
Salizzoni, P., Vaux, S., Creyssels, M., Craske, J. & van Reeuwijk, M. 2024 Entrainment in variable-density jets. J. Fluid Mech. 995, A11.10.1017/jfm.2024.704CrossRefGoogle Scholar
Shin, J.O., Dalziel, S.B. & Linden, P.F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.10.1017/S002211200400165XCrossRefGoogle Scholar
Shringarpure, M., Cantero, M.I. & Balachandar, S. 2012 Dynamics of complete turbulence suppression in turbidity currents driven by monodisperse suspensions of sediment. J. Fluid Mech. 712, 384417.10.1017/jfm.2012.427CrossRefGoogle Scholar
Shringarpure, M., Cantero, M.I. & Balachandar, S. 2015 Analysis of turbulence suppression in sediment-laden saline currents. Procedia Engng. 126, 1623.10.1016/j.proeng.2015.11.170CrossRefGoogle Scholar
Shringarpure, M., Cantero, M.I. & Balachandar, S. 2019 Equivalence of turbulence statistics between monodisperse and polydisperse turbidity currents. Adv. Water Resour. 129, 385399.10.1016/j.advwatres.2017.05.015CrossRefGoogle Scholar
Tsai, Y.-H. & Chou, Y.-J. 2025 On the suspension and deposition within turbidity currents. J. Fluid Mech. 1003, A1.10.1017/jfm.2024.1174CrossRefGoogle Scholar
Wells, M.G. & Dorrell, R.M. 2021 Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 53 (1), 5983.10.1146/annurev-fluid-010719-060309CrossRefGoogle Scholar
Xie, J., Hu, P. & Pan, D. 2025 Coupling regimes between particles and Kelvin–Helmholtz billows in turbidity currents at moderate Reynolds number. (under review).Google Scholar
Xie, J., Hu, P., Zhu, C., Yu, Z. & Pähtz, T. 2023 a Turbidity currents propagating down an inclined slope: particle auto-suspension. J. Fluid Mech. 954, A44.10.1017/jfm.2022.1041CrossRefGoogle Scholar
Xie, J., Zhu, C., Hu, P., Yu, Z. & Pan, D. 2023 b Particle segregation within bidisperse turbidity current evolution. J. Fluid Mech. 971, A16.10.1017/jfm.2023.623CrossRefGoogle Scholar
Zhou, Z.Y., Kuang, S.B., Chu, K.W. & Yu, A.B. 2010 Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 482510.10.1017/S002211201000306XCrossRefGoogle Scholar