Hostname: page-component-7f64f4797f-rcs6z Total loading time: 0 Render date: 2025-11-06T07:17:17.800Z Has data issue: false hasContentIssue false

Transonic buffet flow adaptive control with time-variant reduced-order model

Published online by Cambridge University Press:  03 November 2025

Chuanqiang Gao
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
Xinyu Yang
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
Kai Ren
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
Weiwei Zhang*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China International Joint Institute of Artificial Intelligence on Fluid Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
*
Corresponding author: Weiwei Zhang, aeroelastic@nwpu.edu.cn

Abstract

Transonic buffet is a complex and strongly nonlinear unstable flow sensitive to variations in the incoming flow state. This poses great challenges for establishing accurate-enough reduced-order models, limiting the application of model-based control strategies in transonic buffet control problems. To address these challenges, this paper presents a time-variant modelling approach that incorporates rolling sampling, recursive parameter updating and inner iteration strategies under dynamic incoming flow conditions. The results demonstrate that this method successfully overcomes the difficulty in designing appropriate training signals and obtaining unstable steady base flow. Additionally, it improves the global predictive capability and identification efficiency of linear models for nonlinear flow-system responses by more than one order of magnitude. Furthermore, two adaptive control strategies – minimum variance control and generalised predictive control – are validated as effective based on the time-variant reduced-order model through numerical simulations of the transonic buffet flow over the NACA 0012 aerofoil. The adaptive controllers effectively regulate the unstable eigenvalues of the flow system, achieving the desired control outcomes. They ensure that the shock wave buffet phenomenon does not recur after control is applied, and that the actuator deflection, specifically the trailing-edge flap, returns to zero. Moreover, the control results further confirm the global instability essence of transonic buffet flow from a control perspective, thereby deepening the cognition of this nonlinear unstable flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brunton, S.L. & Noack, B.R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.10.1115/1.4031175CrossRefGoogle Scholar
Carini, M., Pralits, J.O. & Luchini, P. 2015 Feedback control of vortex shedding using a full-order optimal compensator. J. Fluid. Struct. 53, 1525.10.1016/j.jfluidstructs.2014.11.011CrossRefGoogle Scholar
Caruana, D., Mignosi, A., Corrège, M., Le Pourhiet, A. & Rodde, A.M. 2005 Buffet and buffeting control in transonic flow. Aerosp. Sci. Technol. 9 (7), 605616.10.1016/j.ast.2004.12.005CrossRefGoogle Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.10.1146/annurev.fluid.39.050905.110149CrossRefGoogle Scholar
Clarke, D.W., Mohtadi, C. & Tuffs, P.S. 1987 Generalized predictive control–Part I. The basic algorithm. Automatica 23 (2), 137148.10.1016/0005-1098(87)90087-2CrossRefGoogle Scholar
Couplet, M., Basdevant, C. & Sagaut, P. 2005 Calibrated reduced-order POD-Galerkin system for fluid flow modelling. J. Comput. Phys. 207 (1), 192220.10.1016/j.jcp.2005.01.008CrossRefGoogle Scholar
Crouch, J.D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.10.1017/S0022112009006673CrossRefGoogle Scholar
Dadfar, R., Hanifi, A. & Henningson, D.S. 2018 Control of instabilities in an unswept wing boundary layer. AIAA J. 56 (5), 17501759.10.2514/1.J056415CrossRefGoogle Scholar
Dandois, J., Lepage, A., Dor, J.-B., Molton, P., Ternoy, F., Geeraert, A., Brunet, V.Coustols, É. 2014 Open and closed-loop control of transonic buffet on 3D turbulent wings using fluidic devices. Comptes Rendus. Mécanique 342 (6–7), 425436.CrossRefGoogle Scholar
Deck, S. 2005 Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43 (7), 15561566.10.2514/1.9885CrossRefGoogle Scholar
Degregori, E. & Kim, J.W. 2021 Mitigation of transonic shock buffet on a supercritical airfoil through wavy leading edges. Phys. Fluids 33 (2), 026104.10.1063/5.0036821CrossRefGoogle Scholar
Doerffer, P., Hirsch, C., Dussauge, J.-P., Babinsky, H. & Barakos, G.N. 2010 Unsteady Effects of Shock Wave Induced Separation. vol. 114. Springer Science & Business Media.Google Scholar
Dou, Z., Gao, C. & Zhang, W. 2024 Dynamic characteristic of transonic aeroelasticity affected by fluid mode in pre-buffet flow. J. Fluid Mech. 999, A24.10.1017/jfm.2024.764CrossRefGoogle Scholar
Fabbiane, N., Semeraro, O., Bagheri, S. & Henningson, D.S. 2014 Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev. 66 (6), 060801.10.1115/1.4027483CrossRefGoogle Scholar
Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D.S. 2015 On the role of adaptivity for robust laminar flow control. J. Fluid Mech. 767, R1.10.1017/jfm.2015.45CrossRefGoogle Scholar
Friedewald, D. 2023 Large-amplitude gusts on the nasa common research model. J. Aircraft 60 (6), 19011916.10.2514/1.C037198CrossRefGoogle Scholar
Galea, S., Henderson, D., Moses, R., Zimcik, D., White, E. & Ryall, T. 2003 Next generation active buffet suppression system. In AIAA International Air and Space Symposium and Exposition: The Next 100 Years, pp. 2905.Google Scholar
Gao, C., Ma, R., Ren, K., Yuan, H. & Zhang, W. 2025 a Optimal position and angle of jet control for transonic shock buffet with resolvent analysis. AIAA J. 63 (8), 34153433.10.2514/1.J065064CrossRefGoogle Scholar
Gao, C., Yang, X., Ren, K. & Zhang, W. 2025 b Open-loop linear modeling method for unstable flow utilizing built-in data-driven feedback controllers. Phys. Rev. Fluids 10 (3), 033902.10.1103/PhysRevFluids.10.033902CrossRefGoogle Scholar
Gao, C. & Zhang, W. 2020 Transonic aeroelasticity: a new perspective from the fluid mode. Prog. Aerosp. Sci. 113, 100596.10.1016/j.paerosci.2019.100596CrossRefGoogle Scholar
Gao, C., Zhang, W., Kou, J., Liu, Y. & Ye, Z. 2017 Active control of transonic buffet flow. J. Fluid Mech. 824, 312351.10.1017/jfm.2017.344CrossRefGoogle Scholar
Gao, C., Zhang, W. & Ye, Z. 2016 Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap. Comput. Fluids 132, 3245.10.1016/j.compfluid.2016.03.031CrossRefGoogle Scholar
Geoghegan, J.A., Giannelis, N.F. & Vio, G.A. 2020 A numerical investigation of the geometric parametrisation of shock control bumps for transonic shock oscillation control. Fluids 5 (2), 46.10.3390/fluids5020046CrossRefGoogle Scholar
Hasheminejad, S.M., Rabiee, A.H., Jarrahi, M. & Markazi, A.H.D. 2014 Active vortex-induced vibration control of a circular cylinder at low reynolds numbers using an adaptive fuzzy sliding mode controller. J. Fluid. Struct. 50, 4965.10.1016/j.jfluidstructs.2014.06.011CrossRefGoogle Scholar
Herrmann, B., Baddoo, P.J., Dawson, S.T.M., Semaan, R., Brunton, S.L. & McKeon, B.J. 2023 Interpolatory input and output projections for flow control. J. Fluid Mech. 971, A27.10.1017/jfm.2023.680CrossRefGoogle Scholar
Humphreys, M.D. 1951 Pressure Pulsations On Rigid Airfoils at Transonic Speeds. NACA.Google Scholar
Iwatani, Y., Asada, H., Yeh, C.-A., Taira, K. & Kawai, S. 2023 Identifying the self-sustaining mechanisms of transonic airfoil buffet with resolvent analysis. AIAA J. 61 (6), 24002411.10.2514/1.J062294CrossRefGoogle Scholar
Jacquin, L., Molton, P., Deck, S., Maury, B. & Soulevant, D. 2009 Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47 (9), 19851994.10.2514/1.30190CrossRefGoogle Scholar
Jussiau, W., Leclercq, C., Demourant, F. & Apkarian, P. 2022 Learning linear feedback controllers for suppressing the vortex-shedding flow past a cylinder. IEEE Control Syst. Lett. 6, 32123217.10.1109/LCSYS.2022.3183526CrossRefGoogle Scholar
Kegerise, M.A., Cabell, R.H. & Cattafesta, L.N. III 2007 a Real-time feedback control of flow-induced cavity tones—Part 1: Fixed-gain control. J. Sound Vib. 307 (3–5), 906923.10.1016/j.jsv.2007.07.063CrossRefGoogle Scholar
Kegerise, M.A., Cabell, R.H. & Cattafesta, L.N. III 2007 b Real-time feedback control of flow-induced cavity tones—part 2: adaptive control. J. Sound Vib. 307 (3–5), 924940.10.1016/j.jsv.2007.07.062CrossRefGoogle Scholar
Kim, J. & Bewley, T.R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.10.1146/annurev.fluid.39.050905.110153CrossRefGoogle Scholar
Kim, T., Hong, M., Bhatia, K.G. & SenGupta, G. 2005 Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J. 43 (12), 24872495.10.2514/1.11246CrossRefGoogle Scholar
Kojima, Y., Yeh, C.-A., Taira, K. & Kameda, M. 2020 Resolvent analysis on the origin of two-dimensional transonic buffet. J. Fluid Mech. 885, R1.10.1017/jfm.2019.992CrossRefGoogle Scholar
Kuz’min, A. 2009 Bifurcations and buffet of transonic flow past flattened surfaces. Comput. Fluids 38 (7), 13691374.10.1016/j.compfluid.2008.01.017CrossRefGoogle Scholar
Kwon, J.R. & Vepa, R. 2023 Feedback control of limit cycle oscillations and transonic buzz, using the nonlinear transonic small disturbance aerodynamics. J. Vib. Control 29 (3–4), 772783.10.1177/10775463211052370CrossRefGoogle Scholar
Leclercq, C., Demourant, F., Poussot-Vassal, C. & Sipp, D. 2019 Linear iterative method for closed-loop control of quasiperiodic flows. J. Fluid Mech. 868, 2665.10.1017/jfm.2019.112CrossRefGoogle Scholar
Leclercq, C. & Sipp, D. 2023 Mean resolvent operator of a statistically steady flow. J. Fluid Mech. 968, A13.10.1017/jfm.2023.530CrossRefGoogle Scholar
Lee, B.H.K. 1990 Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28 (5), 942944.10.2514/3.25144CrossRefGoogle Scholar
Li, S., Li, W. & Noack, B.R. 2022 Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball. J. Fluid Mech. 952, A36.10.1017/jfm.2022.908CrossRefGoogle Scholar
Li, X., Zhang, W. & Gao, C. 2018 Proximity-interference wake-induced vibration at subcritical re: mechanism analysis using a linear dynamic model. Phys. Fluids 30 (3), 033606.10.1063/1.5020828CrossRefGoogle Scholar
Lin, C.-T., Tsai, M.-L. & Tsai, H.-C. 2023 Flow control of a plunging cylinder based on resolvent analysis. J. Fluid Mech. 967, A41.10.1017/jfm.2023.526CrossRefGoogle Scholar
Ma, R., Gao, C., Ren, K., Yuan, H. & Zhang, W. 2024 Suppression of oscillatory fluid forces in cylinder wake: optimal jet control position designed through resolvent analysis. Phys. Fluids 36 (7), 073622.10.1063/5.0219476CrossRefGoogle Scholar
Ma, R., Gao, C. & Zhang, W. 2025 Dependency of optimal jet control position on Reynolds-Number in cylinder flow via resolvent analysis. Phys. Fluids 37 (9), 093615.10.1063/5.0291803CrossRefGoogle Scholar
Maceda, G.Y.C., Varon, E., Lusseyran, F. & Noack, B.R. 2023 Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control. J. Fluid Mech. 955, A20.10.1017/jfm.2022.1050CrossRefGoogle Scholar
Mayer, R., Lutz, T., Krämer, E. & Dandois, J. 2019 Control of transonic buffet by shock control bumps on wing-body configuration. J. Aircr. 56 (2), 556568.CrossRefGoogle Scholar
Molton, P., Dandois, J., Lepage, A., Brunet, V. & Bur, R. 2013 Control of buffet phenomenon on a transonic swept wing. AIAA J. 51 (4), 761772.CrossRefGoogle Scholar
Nibourel, P., Leclercq, C., Demourant, F., Garnier, E. & Sipp, D. 2023 Reactive control of second mack mode in a supersonic boundary layer with free-stream velocity/density variations. J. Fluid Mech. 954, A20.10.1017/jfm.2022.997CrossRefGoogle Scholar
Nibourel, P., Leclercq, C., Demourant, F., Garnier, E. & Sipp, D. 2024 Extending closed-loop control of two-dimensional supersonic boundary-layer instabilities beyond a single operating point. AIAA J. 62 (3), 896914.10.2514/1.J062544CrossRefGoogle Scholar
Pang, Z. & Cui, H. 2013 System Identification and Adaptive Control: MATLAB Simulation (Revision). Beihang University Press.Google Scholar
Paris, R., Beneddine, S. & Dandois, J. 2023 Reinforcement-learning-based actuator selection method for active flow control. J. Fluid Mech. 955, A8.CrossRefGoogle Scholar
Park, J. & Choi, H. 2020 Machine-learning-based feedback control for drag reduction in a turbulent channel flow. J. Fluid Mech. 904, A24.10.1017/jfm.2020.690CrossRefGoogle Scholar
Pawar, S., Ahmed, S.E., San, O. & Rasheed, A. 2020 An evolve-then-correct reduced order model for hidden fluid dynamics. Mathematics 8 (4), 570.10.3390/math8040570CrossRefGoogle Scholar
Peng, J., Chen, S., Aubry, N., Chen, Z. & Wu, W. 2020 Time-variant prediction of flow over an airfoil using deep neural network. Phys. Fluids 32 (12), 123602.10.1063/5.0022222CrossRefGoogle Scholar
Petrocchi, A., Mauriello, M. & Barakos, G. 2023 Transonic buffet alleviation via virtual control surfaces. Aerosp. Sci. Technol. 140, 108478.10.1016/j.ast.2023.108478CrossRefGoogle Scholar
Poulain, A., Content, C., Rigas, G., Garnier, E. & Sipp, D. 2024 Adjoint-based linear sensitivity of a supersonic boundary layer to steady wall blowing–suction/heating–cooling. J. Fluid Mech. 978, A16.10.1017/jfm.2023.993CrossRefGoogle Scholar
Ren, K., Chen, Y., Gao, C. & Zhang, W. 2020 Adaptive control of transonic buffet flows over an airfoil. Phys. Fluids 32 (9), 096106.10.1063/5.0020496CrossRefGoogle Scholar
Ren, K., Gao, C., Xiong, N. & Zhang, W. 2024 Adaptive control of transonic buffet and buffeting flow with deep reinforcement learning. Phys. Fluids 36 (1), 016143.10.1063/5.0189662CrossRefGoogle Scholar
Ren, K., Gao, C., Zhou, F. & Zhang, W. 2022 Transonic buffet active control with local smart skin. Actuators 11 (6), 155.10.3390/act11060155CrossRefGoogle Scholar
Rowley, C.W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcat. Chaos 15 (03), 9971013.10.1142/S0218127405012429CrossRefGoogle Scholar
Sartor, F., Mettot, C. & Sipp, D. 2015 Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile. AIAA J. 53 (7), 19801993.10.2514/1.J053588CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217CrossRefGoogle Scholar
Semeraro, O. & Pralits, J.O. 2018 Full-order optimal compensators for flow control: the multiple inputs case. Theor. Comput. Fluid Dyn. 32, 285305.10.1007/s00162-018-0454-4CrossRefGoogle Scholar
Shi, X., Gao, C., Liu, K. & Zhang, W. 2025 Transonic aeroelastic stability analysis of launch vehicles using reduced-order model. Aerosp. Sci. Technol. 168, 110884.10.1016/j.ast.2025.110884CrossRefGoogle Scholar
Silva, W. 2005 Identification of nonlinear aeroelastic systems based on the volterra theory: progress and opportunities. Nonlinear Dyn. 39, 2562.10.1007/s11071-005-1907-zCrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 030801.10.1115/1.4001478CrossRefGoogle Scholar
Sipp, D. & Schmid, P.J. 2016 Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools. Appl. Mech. Rev. 68 (2), 020801.10.1115/1.4033345CrossRefGoogle Scholar
Song, Q., Tian, Y. & Cattafesta, L. 2007 Mimo feedback control of flow separation. In 45th AIAA Aerospace Sciences Meeting and Exhibit, pp. 109.Google Scholar
Stringer, R.M., Zang, J. & Hillis, A.J. 2014 Unsteady rans computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Engng 87, 19.10.1016/j.oceaneng.2014.04.017CrossRefGoogle Scholar
Takahashi, H., Liu, F., Palaviccini, M., Oyarzun, M., Griffin, J., Ukeiley, L. & Cattafesta, L. 2011 Experimental study of adaptive control of high-speed flow-induced cavity oscillations. J. Fluid Sci. Technol. 6 (5), 701716.10.1299/jfst.6.701CrossRefGoogle Scholar
Tian, Y., Li, Z. & Peiqing, L. 2018 Upper trailing-edge flap for transonic buffet control. J. Aircraft 55 (1), 382389.10.2514/1.C033134CrossRefGoogle Scholar
Tian, Y., Song, Q. & Cattafesta, L. 2006 Adaptive feedback control of flow separation. In 3rd AIAA Flow Control Conference, pp. 3016.Google Scholar
Tijdeman, H. 1977 Investigations of the transonic flow around oscillating airfoils. NLR-TR 77090 U.Google Scholar
Titchener, N. & Babinsky, H. 2015 A review of the use of vortex generators for mitigating shock-induced separation. Shock Waves 25, 473494.10.1007/s00193-015-0551-xCrossRefGoogle Scholar
Tol, H.J., Kotsonis, M. & De Visser, C.C. 2019 Pressure output feedback control of Tollmien–schlichting waves in Falkner–Skan boundary layers. AIAA J. 57 (4), 15381551.10.2514/1.J057010CrossRefGoogle Scholar
Tol, H.J., Kotsonis, M., De Visser, C.C. & Bamieh, B. 2017 Localised estimation and control of linear instabilities in two-dimensional wall-bounded shear flows. J. Fluid Mech. 824, 818865.10.1017/jfm.2017.355CrossRefGoogle Scholar
Wang, C., Tang, H., Yu, S. & Duan, F. 2017 Control of vortex-induced vibration using a pair of synthetic jets: influence of active lock-on. Phys. Fluids 29 (8), 083602.10.1063/1.4996231CrossRefGoogle Scholar
Wang, X., Deng, N., Maceda, C., Guy, Y. & Noack, B.R. 2023 a Cluster-based control for net drag reduction of the fluidic pinball. Phys. Fluids 35 (2), 023601.10.1063/5.0136499CrossRefGoogle Scholar
Wang, Z., Fan, D., Jiang, X., Triantafyllou, M.S. & Karniadakis, G.E. 2023 b Deep reinforcement transfer learning of active control for bluff body flows at high Reynolds number. J. Fluid Mech. 973, A32.10.1017/jfm.2023.637CrossRefGoogle Scholar
Xu, D. & Zhang, M. 2023 Reinforcement-learning-based control of convectively unstable flows. J. Fluid Mech. 954, A37.10.1017/jfm.2022.1020CrossRefGoogle Scholar
Yang, X., Gao, C., Ren, K. & Zhang, W. 2023 Open-loop flow control design guided by the amplitude-frequency characteristics of the reduced-order model. Phys. Fluids 35 (12), 123612.10.1063/5.0176247CrossRefGoogle Scholar
Yao, W. & Jaiman, R.K. 2017 Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. J. Fluid Mech. 827, 394414.10.1017/jfm.2017.470CrossRefGoogle Scholar
Zhang, M.M., Cheng, L. & Zhou, Y. 2004 Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Phys. Fluids 16 (5), 14391448.10.1063/1.1687413CrossRefGoogle Scholar
Zhang, W. & Ye, Z. 2007 Reduced-order-model-based flutter analysis at high angle of attack. J. Aircraft 44 (6), 20862089.10.2514/1.32285CrossRefGoogle Scholar
Zhao, Y., Dai, Z., Tian, Y. & Xiong, Y. 2020 Flow characteristics around airfoils near transonic buffet onset conditions. Chin. J. Aeronaut. 33 (5), 14051420.10.1016/j.cja.2019.12.022CrossRefGoogle Scholar
Zhu, G., Fang, W. & Zhu, L. 2022 Optimizing low-Reynolds-number predation via optimal control and reinforcement learning. J. Fluid Mech. 944, A3.10.1017/jfm.2022.476CrossRefGoogle Scholar