Skip to main content

Transport of anisotropic particles under waves

  • Michelle H. DiBenedetto (a1), Nicholas T. Ouellette (a1) and Jeffrey R. Koseff (a1)

Using a numerical model, we analyse the effects of shape on both the orientation and transport of anisotropic particles in wavy flows. The particles are idealized as prolate and oblate spheroids, and we consider the regime of small Stokes and particle Reynolds numbers. We find that the particles preferentially align into the shear plane with a mean orientation that is solely a function of their aspect ratio. This alignment, however, differs from the Jeffery orbits that occur in the residual shear flow (that is, the Stokes drift velocity field) in the absence of waves. Since the drag on an anisotropic particle depends on its alignment with the flow, this preferred orientation determines the effective drag on the particles, which in turn impacts their net downstream transport. We also find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We show that this dispersion is a function of the particle’s eccentricity and the ratio of the settling and wave time scales. Due to this preferential alignment, we find that a plume of anisotropic particles in waves is on average transported farther but dispersed less than it would be if the particles were randomly oriented. Our results demonstrate that accurate prediction of the transport of anisotropic particles in wavy environments, such as microplastic particles in the ocean, requires the consideration of these preferential alignment effects.

Corresponding author
Email address for correspondence:
Hide All
Andersson, H. I. & Soldati, A. 2013 Anisotropic particles in turbulence: status and outlook. Acta Mechanica 224, 22192223.
Bakhoday-Paskyabi, M. 2015 Particle motions beneath irrotational water waves. Ocean Dyn. 65, 10631078.
Beron-Vera, F. J., Olascoaga, M. J. & Lumpkin, R. 2016 Inertia-induced accumulation of flotsam in the subtropical gyres. Geophys. Res. Lett. 43, 1222812233.
Brenner, H. 1964 The Stokes resistance of an arbitrary particle II: an extension. Chem. Engng Sci. 19, 599629.
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.
Broday, D., Fichman, M., Shapiro, M. & Gutfinger, C. 1997 Motion of diffusionless particles in vertical stagnation flows II. Deposition efficiency of elongated particles. J. Aero. Sci. 28, 3552.
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015a Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015b Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27, 061703.
Chubarenko, I., Bagaev, A., Zobkov, M. & Esiukova, E. 2016 On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105112.
Eames, I. 2008 Settling of particles beneath water waves. J. Phys. Oceanogr. 38, 28462853.
Einarsson, J., Angilella, J. R. & Mehlig, B. 2014 Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D 278, 7985.
Gallily, I. & Cohen, A. H. 1979 On the orderly nature of the motion of nonspherical aerosol particles. ii. inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338356.
Grinshpun, S. A., Redcoborody, Y. N., Kravchuk, S. G., Zadorozhnii, V. I. & Zhdanov, V. I. 2000 Particle drift in the field of internal gravity wave. Intl J. Multiphase Flow 26, 13051324.
Guha, A. 2008 Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311341.
Hasselmann, K. 1970 Wave driven inertial oscillations. Geophys. Fluid Dyn. 1, 463502.
Isobe, A., Kubo, K., Tamura, Y., Kako, S., Nakashima, E. & Fujii, N. 2014 Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89, 324330.
Jansons, K. M. & Lythe, G. D. 1998 Stochastic Stokes drift. Phys. Rev. Lett. 81, 31363139.
Jeffery, G. B. 1922 The motion of ellipsoidal particles imnmersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Klett, J. D. 1995 Orientation model for particles in turbulence. J. Atmos. Sci. 52, 22762285.
Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D. W. & Law, K. L. 2012 The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, L07601.
Lamb, H. 1945 Hydrodynamics, 6th edn. Dover.
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15, 391427.
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.
Loth, E. 2008 Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182, 342353.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
Maximenko, N., Hafner, J. & Niiler, P. 2012 Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 65, 5162.
McWilliams, J. C., Sullivan, P. P. & Moeng, C. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.
Ni, R., Ouellette, N. T. & Voth, G. A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.
Oberbeck, A. 1876 Über stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 6280.
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.
Ouellette, N. T., O’Malley, P. J. J. & Gollub, J. P. 2008 Transport of finite-sized particles in chaotic flow. Phys. Rev. Lett. 101, 174504.
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13, 093030.
Ryan, P. G., Moore, C. J., van Franeker, J. A. & Moloney, C. L. 2009 Monitoring the abundance of plastic debris in the marine environment. Phil. Trans. R. Soc. Lond. B 364, 19992012.
Santamaria, F., Boffetta, G., Afonso, M. M., Mazzino, A., Onorato, M. & Pugliese, D. 2013 Stokes drift for inertial particles transported by water waves. Europhys. Lett. 102, 14003.
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aero. Sci. 24, 6587.
Shin, M. & Koch, D. L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.
Siewert, C., Kunnen, R. P. J., Meinke, M. & Schröder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.
Van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., Van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F. & Law, K. L. 2015 A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006.
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.
Zastawny, M., Mallouppas, G., Zhao, F. & Van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.
Zhao, L., Challabotla, N. R., Andersson, H. I. & Variano, E. A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed