Skip to main content Accessibility help
×
Home

Triadic resonances in the wide-gap spherical Couette system

  • A. Barik (a1) (a2), S. A. Triana (a3), M. Hoff (a4) and J. Wicht (a1)

Abstract

The spherical Couette system, consisting of a viscous fluid between two differentially rotating concentric spheres, is studied using numerical simulations and compared with experiments performed at BTU Cottbus-Senftenberg, Germany. We concentrate on the case where the outer boundary rotates fast enough for the Coriolis force to play an important role in the force balance, and the inner boundary rotates slower or in the opposite direction as compared to the outer boundary. As the magnitude of differential rotation is increased, the system is found to transition through three distinct hydrodynamic regimes. The first regime consists of the emergence of the first non-axisymmetric instability. Thereafter one finds the onset of ‘fast’ equatorially antisymmetric inertial modes, with pairs of inertial modes forming triadic resonances with the first instability. A further increase in the magnitude of differential rotation leads to the flow transitioning to turbulence. Using an artificial excitation, we study how the background flow modifies the inertial mode frequency and structure, thereby causing departures from the eigenmodes of a full sphere and a spherical shell. We investigate triadic resonances of pairs of inertial modes with the fundamental instability. We explore possible onset mechanisms through numerical experiments.

Copyright

Corresponding author

Email address for correspondence: barik@mps.mpg.de

References

Hide All
Baruteau, C. & Rieutord, M. 2013 Inertial waves in a differentially rotating spherical shell. J. Fluid Mech. 719, 4781.
Bellan, P. M. 2008 Fundamentals of Plasma Physics. Cambridge University Press.
Bratukhin, Iu. K. 1961 On the evaluation of the critical Reynolds number for the flow of fluid between two rotating spherical surfaces. Z. Angew. Math. Mech. J. Appl. Math. Mech. 25 (5), 12861299.
Bryan, G. H. 1889 The waves on a rotating liquid spheroid of finite ellipticity. Phil. Trans. R. Soc. Lond. A 180, 187219.
Christensen, U. R. & Wicht, J. 2007 Section 8.08 – Numerical dynamo simulations. In Treatise on Geophysics (ed. Schubert, G.), pp. 245282. Elsevier.
Egbers, C. & Rath, H. J. 1995 The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mechanica 111 (3–4), 125140.
Figueroa, A., Schaeffer, N., Nataf, H.-C. & Schmitt, D. 2013 Modes and instabilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445469.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hoff, M., Harlander, U., Egbers, C. & Triana, S. A. 2016a Interagierende Trägheitsmoden in einem differenziell rotierenden Kugelspaltexperiment. In Proceedings der 24. GALA-Fachtagung “Experimentelle Strömungsmechanik” (ed. Egbers, C., Ruck, B., Leder, A. & Dopheide, D.), GALA e.V. (German Association for Laser Anemometry), 12-1–12-8.
Hoff, M., Harlander, U. & Triana, S. A. 2016b Study of turbulence and interacting inertial modes in a differentially rotating spherical shell experiment. Phys. Rev. Fluids 1, 043701.
Hollerbach, R. 2003 Instabilities of the Stewartson layer. Part 1. The dependence on the sign of Ro . J. Fluid Mech. 492, 289302.
Hollerbach, R., Futterer, B., More, T. & Egbers, C. 2004 Instabilities of the Stewartson layer. Part 2. Supercritical mode transitions. Theor. Comput. Fluid Dyn. 18 (2), 197204.
Kelley, D. H.2009 Rotating, hydromagnetic laboratory experiment modelling planetary cores. PhD thesis, University of Maryland, College Park, MD.
Kelley, D. H., Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2010 Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81, 026311.
Kelley, D. H., Triana, S. A., Zimmerman, D. S., Tilgner, A. & Lathrop, D. P. 2007 Inertial waves driven by differential rotation in a planetary geometry. Geophys. Astrophy. Fluid Dyn. 101 (5–6), 469487.
Kerswell, R. R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72 (1–4), 107144.
Koch, S., Harlander, U., Egbers, C. & Hollerbach, R. 2013 Inertial waves in a spherical shell induced by librations of the inner sphere: experimental and numerical results. Fluid Dyn. Res. 45 (3), 035504.
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47 (1), 163193.
Matsui, H., Adams, M., Kelley, D., Triana, S. A., Zimmerman, D., Buffett, B. A. & Lathrop, D. P. 2011 Numerical and experimental investigation of shear-driven inertial oscillations in an Earth-like geometry. Phys. Earth Planet. Inter. 188 (34), 194202; Proceedings of the 12th Symposium of SEDI.
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F., Christensen, U. R., Davies, C. J. et al. 2016 Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst. 17, 15861607.
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82 (9), 13971412.
Munson, B. R. & Joseph, D. D. 1971a Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow. J. Fluid Mech. 49, 289303.
Munson, B. R. & Joseph, D. D. 1971b Viscous incompressible flow between concentric rotating spheres. Part 2. Hydrodynamic stability. J. Fluid Mech. 49, 305318.
Munson, B. R. & Menguturk, M. 1975 Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability and experiments. J. Fluid Mech. 69, 705719.
Neiner, C., Floquet, M., Samadi, R., Espinosa Lara, F., Frémat, Y., Mathis, S., Leroy, B., de Batz, B., Rainer, M., Poretti, E. et al. 2012 Stochastic gravito-inertial modes discovered by CoRoT in the hot Be star HD 51452. Astron. Astrophys. 546, A47.
Nikias, C. L. & Raghuveer, M. R. 1987 Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75 (7), 869891.
Pápics, P. I., Briquet, M., Baglin, A., Poretti, E., Aerts, C., Degroote, P., Tkachenko, A., Morel, T., Zima, W., Niemczura, E. et al. 2012 Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317. Astron. Astrophys. 542, A55.
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.
Potter, A. T., Chitre, S. M. & Tout, C. A. 2012 Stellar evolution of massive stars with a radiative 𝛼–𝜔 dynamo. Mon. Not. R. Astron. Soc. 424 (3), 23582370.
Proudman, I. 1956 The almost-rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech. 1, 505516.
Rieutord, M. 1991 Linear theory of rotating fluids using spherical harmonics. Part II. Time-periodic flows. Geophys. Astrophys. Fluid Dyn. 59 (1–4), 185208.
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.
Rieutord, M., Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2012 Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86, 026304.
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.
Schaeffer, N. 2013 Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (3), 751758.
Schaeffer, N. & Cardin, P. 2005 Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers. Phys. Fluids 17 (10), 104111.
Schmitt, D., Cardin, P., Rizza, P. L. & Nataf, H.-C. 2013 Magnetocoriolis waves in a spherical Couette flow experiment. Eur. J. Mech. (B/Fluids) 37, 1022.
Sorokin, M. P., Khlebutin, G. N. & Shaidurov, G. F. 1966 Study of the motion of a liquid between two rotating spherical surfaces. J. Appl. Mech. Tech. Phys. 7 (6), 7374.
Spruit, H. C. 2002 Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923932.
Stewartson, K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131144.
Stewartson, K. & Rickard, J. A. 1969 Pathological oscillations of a rotating fluid. J. Fluid Mech. 35 (4), 759773.
Swami, A., Mendel, J. M. & Nikias, C. L.1998 Higher-Order Spectral Analysis Toolbox. The Mathworks Inc.
Tilgner, A. 1999 Driven inertial oscillations in spherical shells. Phys. Rev. E 59, 17891794.
Tilgner, A. 2007 Zonal wind driven by inertial modes. Phys. Rev. Lett. 99, 194501.
Triana, S. A.2011 Inertial waves in a laboratory model of the Earth’s core. PhD thesis, University of Maryland, College Park, MD.
Vidal, J. & Schaeffer, N. 2015 Quasi-geostrophic modes in the Earth’s fluid core with an outer stably stratified layer. Geophys. J. Intl 202 (3), 21822193.
Wicht, J. 2002 Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132 (4), 281302.
Wicht, J. 2014 Flow instabilities in the wide-gap spherical Couette system. J. Fluid Mech. 738, 184221.
Zhang, K., Earnshaw, P., Liao, X. & Busse, F. H. 2001 On inertial waves in a rotating fluid sphere. J. Fluid Mech. 437, 103119.
Zhang, Y. & Pedlosky, J. 2007 Triad instability of planetary Rossby waves. J. Phys. Oceanogr. 37 (8), 21582171.
Zimmerman, D. S.2010 Turbulent shear flow in a rapidly rotating spherical annulus. PhD thesis, University of Maryland, College Park, MD.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed