Skip to main content Accessibility help
×
×
Home

Tsunami run-up and draw-down on a plane beach

  • GEORGE F. CARRIER (a1), TAI TEI WU (a1) and HARRY YEH (a2)
Abstract

Tsunami run-up and draw-down motions on a uniformly sloping beach are evaluated based on fully nonlinear shallow-water wave theory. The nonlinear equations of mass conservation and linear momentum are first transformed to a single linear hyperbolic equation. To solve the problem with arbitrary initial conditions, we apply the Fourier–Bessel transform, and inversion of the transform leads to the Green function representation. The solutions in the physical time and space domains are then obtained by numerical integration. With this semi-analytic solution technique, several examples of tsunami run-up and draw-down motions are presented. In particular, detailed shoreline motion, velocity field, and inundation depth on the shore are closely examined. It was found that the maximum flow velocity occurs at the moving shoreline and the maximum momentum flux occurs in the vicinity of the extreme draw-down location. The direction of both the maximum flow velocity and the maximum momentum flux depend on the initial waveform: it is in the inshore direction when the initial waveform is predominantly depression and in the offshore direction when the initial waves have a dominant elevation characteristic.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed