Ashurst, W. T., Kerstein, A. R., Kerr, R. A. & Gibson, C. H.
1987
Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids
30, 2343–2353.

Ballouz, J. G. & Ouellette, N. T.
2018
Tensor geometry in the turbulent cascade. J. Fluid Mech.
835, 1048–1064.

Batchelor, G. K. & Townsend, A. A.
1949
The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A
199, 238–255.

Betchov, R.
1956
An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.
1, 497–504.

Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F.
2007
Multiscale model of gradient evolution in turbulent flows. Phys. Rev. Lett.
98, 214501.

Buxton, O. R. H., Breda, M. & Chen, X.
2017
Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow. J. Fluid Mech.
817, 1–20.

Cantwell, B. J.
1992
Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A
4 (4), 782–793.

Chakraborty, P., Balachandar, S. & Adrian, R. J.
2005
On the relationships between local vortex identification schemes. J. Fluid Mech.
535, 189–214.

Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F.
2008
Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids
20, 101504.

Chong, M. S., Perry, A. E. & Cantwell, B. J.
1990
A general classification of three-dimensional flow fields. Phys. Fluids A
2, 765–777.

Das, R. & Girimaji, S. S.
2019
On the Reynolds number dependence of velocity-gradient structure and dynamics. J. Fluid Mech.
861, 163–179.

Dong, X., Gao, Y. & Liu, C.
2019
New normalized Rortex/vortex identification method. Phys. Fluids
31, 011701.

Dubief, Y. & Delcayre, F.
2000
On coherent-vortex identification in turbulence. J. Turbul.
1, N11.

Eberlein, P. J.
1965
On measures of non-normality for matrices. Amer. Math. Monthly
72, 995–996.

Elsinga, G. E. & Marusic, I.
2010
Universal aspects of small-scale motions in turbulence. J. Fluid Mech.
662, 514–539.

Frisch, U., Sulem, P. L. & Nelkin, M.
1978
Simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech.
87, 719–736.

George, W. K.
1992
The decay of homogeneous isotropic turbulence. Phys. Fluids A
4, 1492–1509.

Girimaji, S. S. & Pope, S. B.
1990
A diffusion model for velocity gradients in turbulence. Phys. Fluids
2 (2), 242–256.

Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C.
2014
Evolution of the velocity-gradient tensor in a spatially developing turbulent flow. J. Fluid Mech.
756, 252–292.

Goto, S. & Vassilicos, J. C.
2009
The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids
21, 035104.

Hamlington, P. E., Schumacher, J. & Dahm, W. J. A.
2008
Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Phys. Fluids
20, 111703.

Henrici, P.
1962
Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math.
4, 24–40.

Horiuti, K.
2001
A classification method for vortex sheet and tube structures in turbulent flows. Phys. Fluids
13, 3756–3774.

Horiuti, K., Yanagihara, S. & Tamaki, T.
2016
Nonequilibrium state in energy spectra and transfer with implications for topological transitions and SGS modeling. Fluid Dyn. Res.
48, 021409.

Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. *Tech. Rep.* CTR-S88. Center for Turbulence Research, Stanford University.

Jeong, J. & Hussain, F.
1995
On the identification of a vortex. J. Fluid Mech.
285, 69–94.

Jimenez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S.
1993
The structure of intense vorticity in homogeneous isotropic turbulence. J. Fluid Mech.
255, 65–90.

Johnson, P. L. & Meneveau, C.
2016
A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields. J. Fluid Mech.
804, 387–419.

Kawahara, G.
2005
Energy dissipation in spiral vortex layers wrapped around a straight vortex tube. Phys. Fluids
17, 055111.

Kerr, R. M.
1985
Higher-order derivative correlations and the alignment of small-scale structures in isotropic, numerical turbulence. J. Fluid Mech.
153, 31–58.

Keylock, C. J.
2017
Synthetic velocity gradient tensors and the identification of statistically significant aspects of the structure of turbulence. Phys. Rev. Fluids
2, 004600.

Keylock, C. J.
2018
The Schur decomposition of the velocity gradient tensor for turbulent flows. J. Fluid Mech.
848, 876–904.

Kolmogorov, A. N.
1941
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR
30, 299–303.

Kolmogorov, A. N.
1962
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous, incompressible fluid at high Reynolds number. J. Fluid Mech.
13, 82–85.

Kress, R., De Vies, H. L. & Wegmann, R.
1974
On nonnormal matrices. Linear Algebr. Applics.
8, 109–120.

Laizet, S., Nedić, J. & Vassilicos, C.
2015
Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid. Intl J. Comput. Fluid Dyn.
29 (3-5), 286–302.

Laizet, S., Vassilicos, J. C. & Cambon, C.
2013
Interscale energy transfer in decaying turbulence and vorticity-strain-rate dynamics in grid-generated turbulence. Fluid Dyn. Res.
45 (6), 061408.

Lashermes, B., Roux, S. G., Abry, P. & Jaffard, S.
2008
Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders. Eur. Phys. J. B
61, 201–215.

Lee, S. L.
1995
A practical upper bound for departure from normality. SIAM J. Matrix Anal. Applics.
16, 462–468.

Li, Y. & Meneveau, C.
2007
Material deformation in a restricted Euler model for turbulent flows: analytic solution and numerical tests. Phys. Fluids
19, 015104.

Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Chen, S., Szalay, A. & Eyink, G.
2008
A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul.
9, N31.

Lück, S., Renner, C., Peinke, J. & Friedrich, R.
2006
The Markov–Einstein coherence length – a new meaning for the Taylor length in turbulence. Phys. Lett. A
359, 335–338.

Lund, T. S. & Rogers, M. M.
1994
An improved measure of strain state probability in turbulent flows. Phys. Fluids
6 (5), 1838–1847.

Lüthi, B., Holzner, M. & Tsinober, A.
2009
Expanding the Q–R space to three dimensions. J. Fluid Mech.
641, 497–507.

Martin, J., Dopazo, C. & Valiño, L.
1998
Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models. Phys. Fluids
10, 2012–2025.

Meneveau, C.
2011
Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech.
43, 219–245.

Meneveau, C. & Sreenivasan, K. R.
1987
Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett.
59, 1424–1427.

Ohkitani, K.
2002
Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys. Rev. E
65 (4), 046304.

Ohkitani, K. & Kishiba, S.
1995
Nonlocal nature of vortex stretching in an inviscid fluid. Phys. Fluids
7 (2), 411–421.

Paul, I., Papadakis, G. & Vassilicos, J. C.
2017
Genesis and evolution of velocity gradients in near-field spatially developing turbulence. J. Fluid Mech.
815, 295–332.

Rabey, P. K., Wynn, A. & Buxton, O. R. H.
2015
The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow. J. Fluid Mech.
767, 627–658.

Schur, I.
1909
Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen. Math. Ann.
66, 488–510.

Taylor, G. I.
1935
Statistical theory of turbulence. Proc. R. Soc. Lond. A
151, 421–444.

Taylor, G. I.
1938a
Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A
164, 15–23.

Taylor, G. I.
1938b
The spectrum of turbulence. Proc. R. Soc. Lond. A
164, 476–490.

Tsinober, A.
2001
Vortex stretching versus production of strain/dissipation. In Turbulence Structure and Vortex Dynamics (ed. Hunt, J. C. R. & Vassilicos, J. C.), pp. 164–191. Cambridge University Press.

Tsinober, A.
2009
An Informal Conceptual Introduction to Turbulence. Springer.

Tsinober, A., Shtilman, L. & Vaisburd, H.
1997
A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn. Res.
21, 477–494.

Vieillefosse, P.
1984
Internal motion of a small element of fluid in an inviscid flow. Physica A
125, 150–162.

Wan, M., Chen, S., Eyink, G., Meneveau, C., Perlman, E., Burns, R., Li, Y., Szalay, A. & Hamilton, S.2016 Johns Hopkins Turbulence Database (JHTDB). http://turbulence.pha.jhu.edu/datasets.aspx.
Wan, M., Xiao, Z., Meneveau, C., Eyink, G. L. & Chen, S.
2010
Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence. Phys. Fluids
22 (6), 1–4.

Wilczek, M. & Meneveau, C.
2014
Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech.
756, 191–225.

Yakhot, V.
2003
Pressure-velocity correlations and scaling exponents in turbulence. J. Fluid Mech.
495, 135–143.

Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M.
1999
Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech.
387, 353–396.

Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T.
2016
Spatial evolution of the helical behavior and the 2/3 power-law in single-square-grid-generated turbulence. Fluid Dyn. Res.
48 (2), 0214042.