1.
Abe, H. & Antonia, R. A.
2009
Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Phys. Fluids
21, 025109.

2.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.
2000
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1–54.

3.
del Álamo, J. C. & Jiménez, J.
2009
Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech.
640, 5–26.

4.
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.
2006
Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech.
561, 329–358.

5.
Bernardini, M. & Pirozzoli, S.
2011a
Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids
23, 061701.

6.
Bernardini, M. & Pirozzoli, S.
2011b
Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids
23, 085102.

7.
Bernardini, M., Pirozzoli, S. & Grasso, F.
2011
The wall pressure signature of transonic shock/boundary layer interaction. J. Fluid Mech.
671, 288–312.

8.
Bookey, P., Wyckham, C., Smits, A. J. & Martín, M. P.
2005 New experimental data of STBLI at DNS/LES accessible Reynolds numbers. *AIAA Paper* 2005-309.

9.
Debiève, J. F.
1983 Étude d’une interaction turbulence/onde de choc. PhD thesis, Université d’Aix-Marseille II.

10.
van Driest, E. R.
1951
Turbulent boundary layer in compressible fluids. J. Aero. Sci.
18, 145–160.

11.
van Driest, E. R.
1956
The problem of aerodynamic heating. Aeronaut. Engng Rev.
15, 26–41.

12.
Duan, L., Beekman, I. & Martín, M. P.
2010
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech.
655, 419–445.

13.
Duan, L., Beekman, I. & Martín, M. P.
2011
Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech.
672, 245–267.

14.
Eléna, M. & Lacharme, J.
1988
Experimental study of a supersonic turbulent boundary layer using a laser doppler anemometer. J. Méc. Théor. Appl.
7, 175–190.

15.
Elsinga, G. E., Adrian, R. J., van Oudheusden, B. W. & Scarano, F.
2010
Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech.
644, 35–50.

16.
Erm, L. P. & Joubert, J.
1991
Low Reynolds number turbulent boundary layers. J. Fluid Mech.
230, 1–44.

17.
Farabee, T. & Casarella, M. J.
1991
Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids
3
(10), 2410–2420.

18.
Fernholz, H. H. & Finley, P. J.
1976 A critical compilation of compressible turbulent boundary layer data. *AGARDograph* 223.

19.
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S.
2006
Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech.
556, 271–282.

20.
Gatski, T. B. & Bonnet, J.-P.
2009
Compressibility, Turbulence and High Speed Flow. Elsevier.

21.
Gaviglio, J.
1987
Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer
30, 911–926.

22.
George, W. K. & Castillo, L.
1997
Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev.
50, 689–729.

23.
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A.
2000
Direct numerical simulation of a supersonic boundary layer at Mach 2.5. J. Fluid Mech.
414, 1–33.

24.
Head, M. & Bandyopadhyay, P.
1981
New aspects of turbulent boundary-layer structure. J. Fluid Mech.
107, 297–338.

25.
Hopkins, E. J. & Inouye, M.
1971
An evaluation of theories for predicting turbulent skin friction and heat tranfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J.
9, 993–1003.

26.
Hou, Y. X.
2003 Particle image velocimetry study of shock induced turbulent boundary layer separation. PhD thesis, Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin.

27.
Hoyas, S. & Jiménez, J.
2006
Scaling of velocity fluctuations in turbulent channels up to
. Phys. Fluids
18, 011702.
28.
Huang, P. G., Coleman, G. N. & Bradshaw, P.
1995
Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.
305, 185–218.

29.
Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W.
2009
Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech.
622, 33–62.

30.
Hutchins, N. & Marusic, I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

31.
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S.
2009
Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech.
635, 103–136.

32.
Jiménez, J. & Hoyas, S.
2008
Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech.
611, 215–236.

33.
Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y.
2010
Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech.
657, 336–360.

34.
Jiménez, J. & Pinelli, A.
1999
The autonomous cycle of near–wall turbulence. J. Fluid Mech.
389, 335–359.

35.
Kennedy, C. A. & Gruber, A.
2008
Reduced aliasing formulations of the convective terms within the Navier–Stokes equations. J. Comput. Phys.
227, 1676–1700.

36.
Kim, J., Moin, P. & Moser, R. D.
1987
Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.

37.
Komminao, J. & Skote, M.
2002
Reynolds stress budgets in Couette and boundary layer flows. Flow Turbul. Combust.
68, 167–192.

38.
Kong, H., Choi, H. & Lee, J. S.
2000
Direct numerical simulation of turbulent thermal boundary layers. Phys. Fluids
10, 85–91.

39.
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X.
2011
A numerical study of compressible turbulent boundary layers. Phys. Fluids
23, 015106.

40.
Laufer, J.
1964
Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys. Fluids
7, 1191–1197.

41.
Maeder, T., Adams, N. A. & Kleiser, L.
2001
Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech.
429, 187–216.

42.
Martín, M. P.
2007
Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech.
570, 347–364.

43.
Marusic, I. & Heuer, W. D. C.
2007
Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett.
99, 114504.

44.
Mathis, R., Hutchins, N. & Marusic, I.
2009a
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.

45.
Mathis, R., Monty, J. P., Hutchins, N. & Marusic, I.
2009b
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids
21, 111703.

46.
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S.
2007
Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.
589, 147–156.

47.
Morkovin, M. V.
1961
Effects of compressibility on turbulent flows. In Mécanique de la Turbulence, pp. 367–380. A. Favre.

48.
Nagib, H. M. & Chauhan, K. A.
2008
Variations of von kármán coefficient in canonical flows. Phys. Fluids
20, 101518.

49.
Perry, A. E. & Li, J. D.
1990
Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech.
218, 405–438.

50.
Piponniau, S., Dussauge, J.-P., Debiève, J. F. & Dupont, P.
2009
A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech.
629, 87–108.

51.
Pirozzoli, S.
2010
Generalized conservative approximations of split convective derivative operators. J. Comput. Phys.
229, 7180–7190.

52.
Pirozzoli, S., Bernardini, M. & Grasso, F.
2010a
Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech.
657, 361–393.

53.
Pirozzoli, S., Bernardini, M. & Grasso, F.
2010b
On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech.
648, 325–349.

54.
Pirozzoli, S., Grasso, F. & Gatski, T. B.
2004
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at
. Phys. Fluids
16
(3), 530–545.
55.
Poinsot, T. S. & Lele, S. K.
1992
Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys.
101, 104–129.

56.
Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

57.
Ringuette, M. J., Wu, M. & Martín, M. P.
2008
Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech.
594, 59–69.

58.
Schlatter, P. & Örlü, R.
2010a
Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech.
659, 116–126.

59.
Schlatter, P. & Örlü, R.
2010b
Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids
22, 051704.

60.
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S.
2009
Turbulent boundary layers up to studied through simulation and experiment. Phys. Fluids
21, 051702.
61.
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y.
2009
A high-resolution code for a turbulent boundary layers. J. Comput. Phys.
228, 4218–4231.

62.
Smith, D. R. & Smits, A. J.
1993
The simultaneous measurement of velocity and temperature fluctuations in the boundary layer of a supersonic flow. Exp. Therm. Fluid Sci.
7, 221–229.

63.
Smith, M. W. & Smits, A. J.
1995
Visualization of he structure of supersonic turbulent boundary layers. Exp. Fluids
18, 288–302.

64.
Smits, A. J. & Dussauge, J.-P.
2006
Turbulent Shear Layers in Supersonic Flow, 2nd edn. American Institute of Physics.

65.
Smits, A. J., Matheson, N. & Joubert, P. N.
1983
Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients. J. Ship Res.
147–157.

66.
Smits, A. J., Spina, E. F., Alving, A. E., Smith, R. W. & Fernando, E. M.
1989
A comparison of the turbulence structure of subsonic and supersonic boundary layers. Phys. Fluids A
1, 1865–1875.

67.
Spina, E. F., Donovan, J. F. & Smits, A. J.
1991
On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech.
222, 293–327.

68.
Spina, E. F. & Smits, A. J.
1987
Organized structures in a compressible turbulent boundary layer. J. Fluid Mech.
182, 85–109.

69.
Spina, E. F., Smits, A. J. & Robinson, S. K.
1994
The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech.
26, 287–319.

70.
Stolz, S. & Adams, N. A.
2003
Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids
15
(8), 2398–2412.

71.
Suponitsky, V., Cohen, J. & Bar-Yoseph, P. Z.
2005
The generation of streaks and hairpin vortices from a localized vortex disturbance embedded in unbounded uniform shear flow. J. Fluid Mech.
535, 65–100.

72.
Townsend, A. A.
1976
The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.

73.
Warhaft, Z.
2000
Passive scalars in turbulent flows. Annu. Rev. Fluid Mech.
32, 203–240.

74.
Wu, X. & Moin, P.
2009
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech.
630, 5–41.

75.
Xu, S. & Martin, M. P.
2004
Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids
16
(7), 2623–2639.