Skip to main content
×
×
Home

Turbulence radiation interaction in channel flow with various optical depths

  • S. Silvestri (a1), A. Patel (a1), D. J. E. M. Roekaerts (a1) (a2) and R. Pecnik (a1)
Abstract

The present work consists of an investigation of the turbulence radiation interaction (TRI) in a radiative turbulent channel flow of grey gas bounded by isothermal hot and cold walls. The optical thickness $\unicode[STIX]{x1D70F}$ of the channel is varied from 0.1 to 10 to observe different regimes of TRI. A high-resolution finite volume method for radiative heat transfer is employed and coupled with the direct numerical simulation (DNS) of the flow. The resulting effects of TRI on temperature statistics are strongly dependent on the considered optical depth. In particular, the contrasting role of emission and absorption is highlighted. For a low optical thickness the effect of radiative fluctuations on temperature statistics is low and causes the reduction of temperature variance through the dissipating action of emission. On the other hand, while increasing optical thickness to relatively high levels, the dissipation of temperature variance is balanced, at low wavenumbers in the turbulence spectrum, through the preferential action of absorption, which increases the large-scale temperature fluctuations. A significant rise in the effect of radiation on the temperature variance can be observed as a consequence of the reduction of radiative heat transfer length scales.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Turbulence radiation interaction in channel flow with various optical depths
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Turbulence radiation interaction in channel flow with various optical depths
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Turbulence radiation interaction in channel flow with various optical depths
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email addresses for correspondence: s.silvestri@tudelft.nl, r.pecnik@tudelft.nl
References
Hide All
Boersma, B. J. 2011 A 6th order staggered compact finite difference method for the incompressible Navier–Stokes and scalar transport equations. J. Comput. Phys. 230, 49404954.
Chai, J. C., Lee, H. S. & Patankar, S. V. 1994 Finite volume method for radiation heat transfer. J. Thermophys. Heat Transfer 8 (3), 419425.
Coantic, M. & Simonin, O. 1984 Radiative effects on turbulent temperature spectra and budgets in the planetary boundary layer. J. Atmos. Sci. 41 (17), 26292651.
Coelho, P. J. 2002 Bounded skew high-order resolution schemes for the discrete ordinates method. J. Comput. Phys. 175, 412437.
Coelho, P. J. 2007 Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog. Energy Combust. Sci. 33, 311383.
Coelho, P. J. 2012 Turbulence radiation interaction: from theory to application in numerical simulations. Trans. ASME J. Heat Transfer 134 (3), 031001.
Coelho, P. J., Teerling, O. J. & Roekaerts, D. 2003 Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust. Flame 133, 7591.
Deshmukh, K. V., Modest, M. F. & Haworth, D. C. 2008 Direct numerical simulation of turbulence-radiation interactions in a statistically one-dimensional nonpremixed system. J. Quant. Spectrosc. Radiat. Transfer 109, 23912400.
Ghosh, S. & Friedrich, R. 2015 Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers. Phys. Fluids 27, 055107.
Ghosh, S., Friedrich, R., Pfitzner, M., Stemmer, C., Cuenot, B. & Hafi, M. E. 2011 Effects of radiative heat transfer on the structure of turbulence supersonic channel flow. J. Fluid Mech. 677, 417444.
Ghosh, S., Friedrich, R. & Stemmer, C. 2014 Contrasting turbulence-radiation interaction in supersonic channel and pipe flow. Intl J. Heat Fluid Flow 48, 2434.
Gupta, A., Modest, M. F. & Haworth, D. C. 2009 Large-eddy simulation of turbulence-radiation interactions in a turbulent planar channel flow. Trans. ASME J. Heat Transfer 131 (6), 061704.
Kim, J. & Moin, P. 1987 Transport of passive scalars in turbulent channel flow. In NASA Ames Research Center, Turbulent Shear Flows 6: Selected Papers from the Sixth International Symposium on Turbulent Shear Flows, pp. 8596. Springer.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.
Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (7), 095101.
Pourasani, H. & Mani, A. 2017 Effects of preferential concentration on heat transfer in particle-based solar receivers. J. Solar Energy Engng 139 (2), 021008.
Roger, M., Coelho, P. J. & da Silva, C. B. 2011 Relevance of the subgrid-scales for large eddy simulations of turbulence-radiation interactions in a turbulent plane jet. J. Quant. Spectrosc. Radiat. Transfer 112, 12501256.
Sakurai, A., Matsubara, K., Takakuwa, K. & Kanbayashi, R. 2010 Radiation effects on mixed turbulent natural and forced convection in a horizontal channel using direct numerical simulation. Intl J. Heat Mass Transfer 55, 25392548.
Schertzer, D. & Simonin, O. 1982 A Theoretical Study of Radiative Cooling in Homogeneous and Isotropic Turbulence. pp. 262274. Springer.
Soufiani, A. 1991 Temperature turbulence spectrum for high-temperature radiating gases. J. Thermophys. 5 (4), 489494.
Tesse, L., Dupoirieux, F. & Taine, J. 2004 Monte Carlo modeling of radiative transfer in a turbulent sooty flame. Intl J. Heat Mass Transfer 47, 555572.
Townsend, A. A. 1958 The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech. 4 (4), 361375.
Vicquelin, R., Zhang, Y. F., Gicquel, O. & Taine, J. 2014 Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations. J. Fluid Mech. 753, 360401.
Viskanta, R. & Mengüç, M. P. 1987 Radiation heat transfer in combustion science. Prog. Energy Combust. Sci. 13, 97160.
Zhang, Y. F., Vicquelin, R., Gicquel, O. & Taine, J. 2013 Physical study of radiation effects on the boundary layer structure in a turbulent channel flow. Intl J. Heat Mass Transfer 61, 654666.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed