Skip to main content
×
×
Home

Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime

  • A. J. ASPDEN (a1), M. S. DAY (a1) and J. B. BELL (a1)
Abstract

The response of lean (ϕ ≤ 0.4) premixed hydrogen flames to maintained homogeneous isotropic turbulence is investigated using detailed numerical simulation in an idealised three-dimensional configuration over a range of Karlovitz numbers from 10 to 1562. In particular, a focus is placed on turbulence sufficiently intense that the flames can no longer be considered to be in the thin reaction burning regime. This transition to the so-called distributed burning regime is characterised through a number of diagnostics, and the relative roles of molecular and turbulent mixing processes are examined. The phenomenology and statistics of these flames are contrasted with a distributed thermonuclear flame from a related astrophysical study.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime
      Available formats
      ×
Copyright
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Corresponding author
Email address for correspondence: AJAspden@lbl.gov
References
Hide All
Abraham, J., Williams, F. A. & Bracco, F. V. 1985 A discussion of turbulent flame structure in premixed charges. SAE 850345.
Almgren, A. S., Bell, J. B. & Crutchfield, W. Y. 2000 Approximate projection methods: Part I. Inviscid analysis. SIAM J. Sci. Comput. 22, 11391159.
Almgren, A. S., Bell, J. B. & Szymczak, W. G. 1996 A Numerical Method for the Incompressible Navier–Stokes Equations Based on an Approximate Projection. SIAM J. Sci. Comput. 17, 358369.
Aspden, A. J., Bell, J. B., Day, M. S., Woosley, S. E. & Zingale, M. 2008 a Turbulence–Flame Interactions in Type Ia Supernovae. Astrophys. J. 689, 11731185.
Aspden, A. J., Bell, J. B. & Woosley, S. E. 2010 Distributed Flames in Type Ia Supernovae. Astrophys. J. 710, 16541663.
Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 b Analysis of Implicit LES methods. Commun. Appl. Math. Comput. Sci. 3 (1), 103126.
Baum, M., Poinsot, T. J., Haworth, D. C. & Darabiha, N. 1994 Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.
Bell, J. B., Brown, N. J., Day, M. S., Frenklach, M., Grcar, J. F. & Tonse, S. R. 2000 The dependence of chemistry on the inlet equivalence ratio in vortex–flame interactions. Proc. Combust. Inst. 28, 19331939.
Bell, J. B., Cheng, R. K., Day, M. S., Beckner, V. E. & Lijewski, M. J. 2008 Interaction of turbulence and chemistry in a low-swirl burner. J. Phys.: Conf. Ser. 125, 012027.
Bell, J. B., Cheng, R. K., Day, M. S. & Shepherd, I. G. 2007 a Numerical simulation of Lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31, 13091317.
Bell, J. B., Day, M. S. & Grcar, J. F. 2002 a Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29, 19871993.
Bell, J. B., Day, M. S., Grcar, J. F., Bessler, W. G., Schultz, C., Glarborg, P. & Jensen, A. D. 2002 b Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame. Proc. Combust. Inst. 29, 21952202.
Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F. & Filatyev, S. F. 2007 b Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31, 12991307.
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Natl Acad. Sci. USA 102 (29), 1000610011.
Borghi, R. 1985 On the structure of turbulent premixed flames. In Recent Advances in Aeronautical Science (ed. Bruno, C. & Casci, C.). Pergamon.
Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C. Jr, Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M. & Goldenberg, M. 1995 GRI-Mech: an optimized detailed chemical reaction mechanism for methane combustion. Available at: http://www.me.berkeley.edu/gri_mech/.
Bray, K. N. C. 1995 Turbulent Transport in Flames. R. Soc. Proc. Lon. A 451, 231256.
Bregeon, B., Gordon, A. S. & Williams, F. A. 1978 Near-limit downward propagation of hydrogen and methane flames in oxygen/nitrogen mixtures. Combust. Flame 33, 3345.
Bremer, P.-T., Weber, G., Tierny, J., Pascucci, V., Day, M. & Bell, J. 2009 A topological framework for the interactive exploration of large scale turbulent combustion. In Proc. 5th IEEE Intl Conf. on e-Science, pp. 247–254.
Chen, Y.-C. & Mansour, M. S. 1997 Simultaneous Rayleigh scattering and laser-induced CH fluorescence for reaction zone imaging in high-speed premixed hydrocarbon flames. Appl. Phys. B 64 (5), 599605.
Chen, Y.-C., Peters, N., Schneemann, G. A., Wruck, N., Renz, U. & Mansour, M. S. 1996 The detailed flame structure of highly stretched turbulent premixed methane–air flames. Combust. Flame 107 (3), 223244.
Damköhler, G. 1940 Der Einfluss der Turbulenz auf die Flammengeschwindigenkeit in Gasgemischen. Z. Elektrochem. 46, 601652.
Darbyshire, O. R., Swaminathan, N. & Hochgreb, S. 2010 The effects of small-scale mixing models on the prediction of turbulent premixed and stratified combustion. Combust. Sci. Technol. 182, 11411170.
Day, M. S. & Bell, J. B. 2000 Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4, 535556.
Day, M. S., Bell, J. B., Bremer, P.-T., Pascucci, V., Beckner, V. & Lijewski, M. J. 2009 a Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156 (5), 10351045.
Day, M. S., Bell, J. B., Cheng, R. K., Tachibana, S., Beckner, V. E. & Lijewski, M. J. 2009 b Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and computational analysis at the laboratory scale, J. Phys.: Conf. Ser. 180, 012031.
Dunn, M. J., Masri, A. R. & Bilger, R. B. 2007 A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151 (1–2), 4660.
Dunn, M. J., Masri, A. R., Bilger, R. W., Barlow, R. S. & Wang, G.-H. 2009 The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32 (2), 17791786.
Ern, A. & Giovangigli, V. 1994 Multicomponent Transport Algorithms. Lecture Notes in Physics, vol. m24. Springer.
Gollub, J. P., Clarke, J., Gharib, M., Lane, B. & Mesquita, O. N. 1991 Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett. 67 (25), 35073510.
Jayesh, & Warhaft, Z. 1991 Probability distribution of a passive scalar in grid-generated turbulence. Phys. Rev. Lett. 67 (25), 35033506.
Kalghatgi, G. T., Cousins, J. M. & Bray, K. N. C. 1981 Crossed beam correlation measurements and model predictions in a rocket exhaust plume. Combust. Flame 43, 5167.
Kee, R. J., Grcar, J. F., Smooke, M. D. & Miller, J. A. 1983 PREMIX: A Fortran program for modeling steady, laminar, one-dimensional premixed flames. Tech. Rep. SAND85-8240. Sandia National Laboratories, Livermore.
Klimov, A. M. 1963 Laminar flame in a turbulent flow. Zhur. Prikl. Mekh. Tekh. Fiz. 3, 4958.
Kolmogorov, A. 1941 The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Akad. Nauk SSSR Dokl. 30, 301305.
Littlejohn, D. & Cheng, R. K. 2007 Fuel effects on a low-swirl injector for lean premixed gas turbines. Proc. Combust. Inst. 31 (2), 31553162.
Majda, A. & Sethian, J. A. 1985 The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42, 185205.
Mansour, M. S., Chen, Y.-C. & Peters, N. 1992 The Reaction Zone Structure of Turbulent Premixed Methane–Helium–Air Flames near Extinction. In 24th Symp. (International) on Combustion, pp. 461–468.
Mansour, M. S., Peters, N. & Chen, Y.-C. 1998 Investigation of scalar mixing in the thin reaction zones regime using a simultaneous CH-LIF/Rayleigh laser technique. Proc. Combust. Inst. 27 (1), 767773.
Mantel, T. & Borghi, R. 1994 A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443457.
Markstein, G. H. 1949 Cell structure of propane flames burning in tubes. J. Chem. Phys. 17 (4), 428429.
Meneveau, C. & Poinsot, T. 1991 Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86 (4), 311332.
Mitani, T. & Williams, F. A. 1980 Studies of cellular flames in hydrogen–oxygen–nitrogen mixtures. Combust. Flame 39, 169190.
Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y. & Welcome, M. W. 1995 An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278304.
Peters, N. 1986 Laminar flamelet concepts in turbulent combustion. In 21st Symp. (International) on Combustion, pp. 1231–1250. Combustion Institute.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn. Edwards.
Poinsot, T., Veynante, D. & Candel, S. 1990 Diagrams of premixed turbulent combustion based on direct simulation. Proc. Combust. Inst. 23, 613619.
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.
Poludnenko, A. Y. & Oran, E. S. 2010 a The interaction of high-speed turbulence with flames: Global properties and internal flame structure. Combust. Flame 157, 9951011.
Poludnenko, A. Y. & Oran, E. S. 2010 b The interaction of high-speed turbulence with flames: Turbulent flame speed. Combust. Flame 158, 301326.
Pope, S. B. 1987 Turbulent premixed flames. Annu. Rev. Fluid Mech. 19 (1), 237270.
Pope, S. B. & Anand, M. S. 1985 Flamelet and distributed combustion in premixed turbulent flames. Proc. Combust. Inst. 20 (1), 403410.
Rehm, R. G. & Baum, H. R. 1978 The equations of motion for thermally driven buoyant flows. J. Res. Natl Bur. Stand. 83, 297308.
Roberts, W. L., Driscoll, J. F., Drake, M. C. & Goss, L. P. 1993 Images of the quenching of a flame by a vortex – to quantify regimes of turbulent combustion. Combust. Flame 94 (1), 5869.
Strakey, P., Sidwell, T. & Ontko, J. 2007 Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proc. Combust. Inst. 31, 31733180.
Sullivan, N., Jensen, A., Glarborg, P., Day, M. S., Grcar, J. F., Bell, J. B., Pope, C. & Kee, R. J. 2002 Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane–air flames. Combust. Flame 131, 285298.
Summerfield, M., Reiter, S. H., Kebely, V. & Mascolo, R. W. 1954 The physical structure of turbulent flames. J. Jet Propul. 24 (4), 254255.
Summerfield, M., Reiter, S. H., Kebely, V. & Mascolo, R. W. 1955 The structure and propagation mechanism of turbulent flames in high speed flow. J. Jet Propul. 25 (8), 377384.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Thoroddsen, S. T. & Van Atta, C. W. 1992 Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech. 244, 547566.
Veynante, D., Trouvé, A., Bray, K. N. C. & Mantel, T. 1997 Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263293.
Williams, F. A. 1976 Criteria for existence of wrinkled laminar flame structure of turbulent premixed flames. Combust. Flame 26, 269270.
Williams, F. A. 1985 a Combustion Theory. Addison-Wesley.
Williams, F. A. 1985 b Turbulent combustion. In Mathematics of Combustion (ed. Buckmaster, J.). SIAM.
Zeldovich, Y. B. 1944 Theory of Combustion and Detonation in Gases (in Russian). Acad. Sci. USSR.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification