Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:13:33.264Z Has data issue: false hasContentIssue false

Turbulent mixing and trajectories of jets in a supersonic cross-flow with different injectants

Published online by Cambridge University Press:  01 February 2021

Dan Fries*
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Devesh Ranjan*
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Suresh Menon
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
*
Email addresses for correspondence: dfries@gatech.edu, devesh.ranjan@me.gatech.edu
Email addresses for correspondence: dfries@gatech.edu, devesh.ranjan@me.gatech.edu

Abstract

We investigate flow fields and trajectories of sonic jets in a supersonic cross-flow with different injectant properties. The cross-flow is held at a fixed condition with Mach number 1.71, static temperature $\sim$375 K and static pressure $\sim$76 kPa. Jet conditions cover momentum flux ratios $J$ from 1 to 6, molecular weights from $\sim$4 to 44 g mol$^{-1}$ and specific heat ratios from $\sim$1.24 to 1.66. Mie-scattering images are used to study turbulent mixing and trajectory development. Qualitative trends suggest that, at $J=4\text {--}6$, the convective Mach number concept applies as discussed in previous literature. At lower $J$, however, trends for changing molecular weights seem to reverse and the boundary layer might influence turbulent mixing. Analytically estimated jet velocities suggest the suppression of hydrodynamic instabilities changes at different rates for different injectants, as $J$ increases. A newly developed, semi-empirical jet trajectory scaling explicitly considers the momentum flux ratio, boundary layer effects and the existence of the jet bow shock. For validation, this scaling is applied to our trajectory data and those of existing literature, extending the covered parameter space. Quantifying the degree of trajectory correlation shows the scaling is specifically relevant at $J \leq 6$ in this study, where the boundary layer and bow shock influence are important. On the other hand, at higher $J$ and for thin boundary layers, the momentum flux ratio plays a more dominant role. The results in this study can guide the design of injection systems for supersonic applications and improve prediction of jet trajectories.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J.D. 2006 Hypersonic and High-Temperature Gas Dynamics. AIAA.10.2514/4.861956CrossRefGoogle Scholar
Ben-Yakar, A., Mungal, M.G. & Hanson, R.K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18 (2), 026101.10.1063/1.2139684CrossRefGoogle Scholar
Bertagni, M.B., Marro, M., Salizzoni, P. & Camporeale, C. 2019 Solution for the statistical moments of scalar turbulence. Phys. Rev. Fluids 4 (12), 124701.10.1103/PhysRevFluids.4.124701CrossRefGoogle Scholar
Broadwell, J.E. & Breidenthal, R.E. 1984 Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405412.10.1017/S0022112084002408CrossRefGoogle Scholar
Castellanos, J.L., Gómez, S. & Guerra, V. 2002 The triangle method for finding the corner of the l-curve. Appl. Numer. Maths 43 (4), 359373.10.1016/S0168-9274(01)00179-9CrossRefGoogle Scholar
Chauhan, K.A., Monkewitz, P.A. & Nagib, H.M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.10.1088/0169-5983/41/2/021404CrossRefGoogle Scholar
Coleman, H.W. & Steele, W.G. 2009 Experimentation, Validation, and Uncertainty Analysis for Engineers. John Wiley & Sons.10.1002/9780470485682CrossRefGoogle Scholar
Gamba, M. & Mungal, M.G. 2015 Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. J. Fluid Mech. 780, 226273.10.1017/jfm.2015.454CrossRefGoogle Scholar
Gevorkyan, L., Shoji, T., Getsinger, D.R., Smith, O.I. & Karagozian, A.R. 2016 Transverse jet mixing characteristics. J. Fluid Mech. 790, 237274.10.1017/jfm.2016.5CrossRefGoogle Scholar
Gruber, M.R., Nejadt, A.S., Chen, T.H. & Dutton, J.C. 1995 Mixing and penetration studies of sonic jets in a mach 2 freestream. J. Propul. Power 11 (2), 315323.10.2514/3.51427CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1997 a Compressibility effects in supersonic transverse injection flowfields. Phys. Fluids 9 (5), 14481461.10.1063/1.869257CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 1997 b Large structure convection velocity measurements in compressible transverse injection flowfields. Exp. Fluids 22 (5), 397407.10.1007/s003480050066CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. & Dutton, J.C. 2000 Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J. Propul. Power 16 (3), 449457.10.2514/2.5609CrossRefGoogle Scholar
Hasselbrink, E.F. & Mungal, M.G. 2001 Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J. Fluid Mech. 443, 125.10.1017/S0022112001005146CrossRefGoogle Scholar
Heister, S.D. & Karagozian, A.R. 1990 Gaseous jet in supersonic crossflow. AIAA J. 28 (5), 819827.10.2514/3.25125CrossRefGoogle Scholar
Lin, K., Ryan, M., Carter, C., Gruber, M. & Raffoul, C. 2010 Raman scattering measurements of gaseous ethylene jets in a mach 2 supersonic crossflow. J. Propul. Power 26 (3), 503513.10.2514/1.43757CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.10.1146/annurev-fluid-120710-101115CrossRefGoogle Scholar
McClinton, C.R. 1974 Effect of ratio of wall boundary layer thickness to jet diameter on mixing of a normal hydrogen jet in a supersonic stream. Tech. Rep. NASA-TM-X-3030. NTRS, NASA Langley Research Center (US), Washington (DC), contract No.: RTOP 501-04-03-03.Google Scholar
McDaniel, J.C. & Raves, J. 1988 Laser-induced-fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor. J. Propul. Power 4 (6), 591597.10.2514/3.23105CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.10.1017/S0022112005003514CrossRefGoogle Scholar
Papamoschou, D. & Hubbard, D.G. 1993 Visual observations of supersonic transverse jets. Exp. Fluids 14 (6), 468476.10.1007/BF00190201CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.10.1017/S0022112088003325CrossRefGoogle Scholar
Pernpeintner, M., Lauer, M., Hirsch, C. & Sattelmayer, T. 2011 A method to obtain planar mixture fraction statistics in turbulent flows seeded with tracer particles. In ASME 2011 Turbo Expo: Turbine Technical Conference, pp. 1341–1350. American Society of Mechanical Engineers Digital Collection.10.1115/GT2011-46844CrossRefGoogle Scholar
Pizzaia, A. & Rossmann, T. 2018 Effect of boundary layer thickness on transverse sonic jet mixing in a supersonic turbulent crossflow. Phys. Fluids 30 (11), 115104.10.1063/1.5056540CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531CrossRefGoogle Scholar
Portz, R. & Segal, C. 2006 Penetration of gaseous jets in supersonic flows. AIAA J. 44 (10), 24262429.10.2514/1.23541CrossRefGoogle Scholar
Povinelli, F.P., Povinelli, L.A. & Hersch, M. 1970 Supersonic jet penetration/up to mach 4/into a mach 2 airstream. J. Spacecr. Rockets 7 (8), 988992.10.2514/3.30082CrossRefGoogle Scholar
Ragni, D., Schrijer, F., Van Oudheusden, B.W. & Scarano, F. 2011 Particle tracer response across shocks measured by PIV. Exp. Fluids 50 (1), 5364.10.1007/s00348-010-0892-2CrossRefGoogle Scholar
Rothstein, A. & Wantuck, P. 1992 A study of the normal injection of hydrogen into a heated supersonicflow using planar laser-induced fluorescence. In 28th Joint Propulsion Conference and Exhibit, Nashville, TN, July 6–8. AIAA, SAE, ASME, and ASEE.10.2514/6.1992-3423CrossRefGoogle Scholar
Santiago, J.G. & Dutton, J.C. 1997 Velocity measurements of a jet injected into a supersonic crossflow. J. Propul. Power 13 (2), 264273.10.2514/2.5158CrossRefGoogle Scholar
Sautet, J.C. & Stepowski, D. 1994 Single-shot laser Mie scattering measurements of the scalar profiles in the near field of turbulent jets with variable densities. Exp. Fluids 16 (6), 353367.10.1007/BF00202058CrossRefGoogle Scholar
Smith, S.H. & Mungal, M.G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.10.1017/S0022112097007891CrossRefGoogle Scholar
Sun, M. & Hu, Z. 2018 Mixing in nearwall regions downstream of a sonic jet in a supersonic crossflow at mach 2.7. Phys. Fluids 30 (10), 106102.10.1063/1.5045752CrossRefGoogle Scholar
Takahashi, H., Masuya, G. & Hirota, M. 2010 Effects of injection and main flow conditions on supersonic turbulent mixing structure. AIAA J. 48 (8), 17481756.10.2514/1.J050355CrossRefGoogle Scholar
VanLerberghe, W.M., Santiago, J.G., Dutton, J.C. & Lucht, R.P. 2000 Mixing of a sonic transverse jet injected into a supersonic flow. AIAA J. 38 (3), 470479.10.2514/2.984CrossRefGoogle Scholar
Watanabe, J., Kouchi, T., Takita, K. & Masuya, G. 2012 Large-eddy simulation of jet in supersonic crossflow with different injectant species. AIAA J. 50 (12), 27652778.10.2514/1.J051550CrossRefGoogle Scholar
White, F.M. & Corfield, I. 2006 Viscous Fluid Flow, vol. 3. McGraw-Hill.Google Scholar
Zukoski, E.E. & Spaid, F.W. 1964 Secondary injection of gases into a supersonic flow. AIAA J. 2 (10), 16891696.10.2514/3.2653CrossRefGoogle Scholar
Supplementary material: PDF

Fries et al. supplementary material

Supplementary data

Download Fries et al. supplementary material(PDF)
PDF 1.4 MB