Skip to main content

Turbulent resistivity in wavy two-dimensional magnetohydrodynamic turbulence

  • SHANE R. KEATING (a1) and P. H. DIAMOND (a1)

The theory of turbulent resistivity in ‘wavy’ magnetohydrodynamic turbulence in two dimensions is presented. The goal is to explore the theory of quenching of turbulent resistivity in a regime for which the mean field theory can be rigorously constructed at large magnetic Reynolds number Rm. This is achieved by extending the simple two-dimensional problem to include body forces, such as buoyancy or the Coriolis force, which convert large-scale eddies into weakly interacting dispersive waves. The turbulence-driven spatial flux of magnetic potential is calculated to fourth order in wave slope – the same order to which one usually works in wave kinetics. However, spatial transport, rather than spectral transfer, is the object here. Remarkably, adding an additional restoring force to the already tightly constrained system of high Rm magnetohydrodynamic turbulence in two dimensions can actually increase the turbulent resistivity, by admitting a spatial flux of magnetic potential which is not quenched at large Rm, although it is restricted by the conditions of applicability of weak turbulence theory. The absence of Rm-dependent quenching in this wave-interaction-driven flux is a consequence of the presence of irreversibility due to resonant nonlinear three-wave interactions, which are independent of collisional resistivity. The broader implications of this result for the theory of mean field electrodynamics are discussed.

Hide All
Benney, D. J. & Newell, A. C. 1969 Random wave closures. Stud. Appl. Maths 48, 29.
Blackman, E. G. & Field, G. B. 2000 Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534, 984988.
Blackman, E. G. & Field, G. B. 2002 New dynamical mean-field dynamo theory and closure approach. Phys. Rev. Lett. 89, 265007.
Bracco, A., Provenzale, A., Spiegel, E. A. & Yecko, P. 1998 Spotted discs. In Theory of Black Hole Accretion Disks (ed. Abramowicz, M. A., Bjornsson, G. & Pringle, J. E.), pp. 254–270.
Cattaneo, F. 1994 On the effects of a weak magnetic field on turbulent transport. Astrophys. J. 434, 200205.
Cattaneo, F. & Vaǐnshteǐn, S. I. 1991 Suppression of turbulent transport by a weak magnetic field. Astrophys. J. 376, L21L24.
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.
Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. 2005 Zonal flows in plasmas – a review. Plasma Phys. Control. Fusion 47, R35R161.
Diamond, P. H., Itoh, S.-I., Itoh, K. & Silvers, L. 2007 β-plane magnetohydrodynamic turbulence and dissipation in the solar tachocline. In Proc. of the Tachocline Dynamics Workshop (Nov. 2004, Isaac Newton Institute, Cambridge, UK) (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.). Cambridge University Press.
Fyfe, D. & Montgomery, D. 1976 High-beta turbulence in two-dimensional magnetohydrodynamics. J. Plasma Phys. 16, 181191.
Fyfe, D., Montgomery, D. & Joyce, G. 1977 Dissipative, forced turbulence in two-dimensional magnetohydrodynamics. J. Plasma Phys. 17, 369398.
Galtier, S., Nazarenko, S. V., Newell, A. C. & Pouquet, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.
Gruzinov, A. V. & Diamond, P. H. 1994 Self-consistent theory of mean-field elctrodynamics. Phys. Rev. Lett. 72, 16511653.
Gruzinov, A. V. & Diamond, P. H. 1996 Nonlinear mean-field elctrodynamics of turbulent dynamos. Phys. Plasmas 3 (5), 18531857.
Hasselmann, K. 1966 Feynmann diagrams and interaction rules of wave–wave scattering processes. Rev. Geophys. 4, 132.
Kaburaki, O. & Uchida, Y. 1971 Magnetohydrodynamic wave-mode coupling. Quantum field-theoretical approach to weakly non-linear case with application to solar coronal heating. Publ. Astr. Soc. Japan 23, 405.
Kleeorin, N. I. & Ruzmaikin, A. A. 1982 Dynamics of the average turbulent helicity in a magnetic field. Magnetohydrodynamics 19, 116122, transl. from Magnitaya Gidrodinamika.
Kleeorin, N. I., Rogachevskii, I. V. & Ruzmaikin, A. A. 1990 Magnetic force reversal and instability in a plasma with advanced magnetohydrodynamic turbulence. Sov. Phys. J. Exp. Theor. Phys. 70, 878.
Krommes, J. A. 2002 Fundamental statistical descriptions of plamsa turbulence in magnetic fields. Phys. Rep. 360, 1352.
Kulsrud, R. M. & Anderson, S. W. 1992 The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field. Astrophys. J. 396, 606630.
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 13971412.
Miesch, M. S. 2005 Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys. 2, 1.
Mikhailovskii, A. B., Novakovskaia, E. A., Lakhin, V. P., Novakovskii, S. V. & Onishchenko, O. G. 1989 A contribution to the theory of weakly turbulent Kolmogorov spectra of a homogeneous magnetized plasma. Sov. Phys., J. Exp. Theor. Phys. 95, 15981613.
Moffatt, H. K. 1970 Dynamo action associated with random inertial waves in a rotating conducting fluid. J. Fluid Mech. 44, 705719.
Moffatt, H. K. 1972 An approach to a dynamic theory of dynamo action in a rotating conduting fluid. J. Fluid Mech. 53, 385399.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Ng, C. S. & Bhattacharjee, A. 1997 Scaling of anisotropic spectra due to the weak interaction of shear-Alfvén wave packets. Phys. Plasmas 4, 605610.
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. 1, 853860.
Peierls, R. E. 1929 Zur kinetischen theorie der wärmeleitungen in kristallen. Ann. Phys. 3, 10551101.
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. J. Fluid Mech. 9, 193217.
Pouquet, A. 1978 On two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 88, 116.
Pouquet, A., Frisch, U. & Leorat, J. 1976 Strong magnetohydrodynamic helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321354.
Rhines, P. B. 1975 Waves and turbulence on a β-plane. J. Fluid Mech. 69, 417443.
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. W. A. Benjamin.
Silvers, L. J. 2005 Dynamic effects of a magnetic field on diffusion in a chaotic flow. Phys. Lett. A 334, 400405.
Silvers, L. J., Keating, S. R. & Diamond, P. H. 2008 On cross-phase and the quenching of the turbulent diffusion of magnetic fields in two dimensions. Astrophys. J. Lett. (submitted).
Spiegel, E. A. & Zahn, J.-P. 1992 The solar tachocline. Astron. Astrophys. 265, 106114.
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.
Steenbeck, M., Krause, F. & Rädler, K. H. 1966 A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion under the influence of coriolis forces. Z. Naturf. A 21, 369376.
Ting, A. C., Montgomery, D. & Matthaeus, W. H. 1986 Turbulent relaxation processes in magnetohydrodynamics. Phys. Fluids 29, 32613274.
Tobias, S. M. 2005 The solar tachocline: formation, stability and its role in the solar dynamo. In Fluid Dynamics and Dynamos in Astrophysics and Geophysics (ed. Soward, A. M., Jones, C. A., Hughes, D. W. & Weiss, N. O.), pp. 193234. CRC Press.
Tsinober, A. B. 1975 Magnetohydrodynamic turbulence. Magnitnaia Gidrodinamika 1, 722.
Vaǐnshteǐn, S. I. & Zel'dovich, Y. B. 1972 Origin of magnetic fields in astrophysics. Sov. Phys. Usp. 15, 159.
Wersinger, J. M., Finn, J. M. & Ott, E. 1980 Bifurcation and ‘strange’ behavior in instability saturation by nonlinear three-wave coupling. Phys. Fluids 23 (6), 11421154.
Zakharov, V. E., L'vov, V. X. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I. Springer.
Zel'dovich, Ya. B. 1957 The magnetic field in the two-dimensional motion of a conducting turbulent liquid. Sov. Phys. J. Exp. Theor. Phys. 4, 460462.
Zel'dovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. 1983 Magnetic Fields in Astrophysics. Gordon & Breach.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed