Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T11:38:05.773Z Has data issue: false hasContentIssue false

Turbulent transfer and entrainment in a low-density jet

Published online by Cambridge University Press:  08 August 2023

P. Salizzoni*
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, University of Lyon, CNRS UMR 5509 Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard, 36, avenue Guy de Collongue, 69134 Ecully, France Department of Environmental, Land, and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
S. Vaux
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SA2I, LIE, Cadarache, 13115 St Paul-Lez-Durance, France
M. Creyssels
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, University of Lyon, CNRS UMR 5509 Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard, 36, avenue Guy de Collongue, 69134 Ecully, France
M. Amielh
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE UMR 7342, 49, rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France
L. Pietri
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE UMR 7342, 49, rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France
F. Anselmet
Affiliation:
Aix Marseille University, CNRS, Centrale Marseille, IRPHE UMR 7342, 49, rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France
*
Email address for correspondence: pietro.salizzoni@ec-lyon.fr

Abstract

We investigate the dynamics of a low-density round jet, with a focus on the mechanisms governing the turbulent momentum and mass transfers as well as on the entrainment of ambient fluid. To that purpose, we combine a theoretical analysis, laboratory experiments and numerical simulations. The theoretical analysis relies on a general formulation of the entrainment decomposition for the case of large density differences, revealing the role of the processes contributing to the entrainment: turbulent kinetic energy production and variation in the shape of the mean velocity radial profiles. The spatial evolution of these terms has been evaluated by means of challenging experiments, providing a unique data set of combined velocity and density statistics of a low-density jet and an air jet. The same flows are investigated by means of large-eddy simulation (LES). Other than for providing complementary information on flow statistics, LES is here used to investigate the role of varying conditions imposed at the source, notably concerning the shape of the inlet velocity profile and the presence of a bottom wall surrounding the source. Experimental and numerical results provide clear insight on how a reduced density within the jet enhances the turbulent kinetic energy production (compared to an iso-density jet) and modifies the shape of the mean velocity profiles. Despite its clear influence on the flow statistics, the reduced density has overall little influence on the entrainment rate, which also shows little sensitivity to varying source conditions.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, Y., Koyama, H. & Morishita, E. 1974 Effects of an air stream on turbulent diffusion of a helium jet from a small nozzle. Phys. Fluids 17 (4), 665673.CrossRefGoogle Scholar
Amielh, M., Djeridane, T., Anselmet, F. & Fulachier, L. 1996 Velocity near-field of variable density turbulent jets. Intl J. Heat Mass Transfer 39 (10), 21492164.CrossRefGoogle Scholar
Benedict, L.H. & Gould, R.D. 1996 Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22 (2), 129136.CrossRefGoogle Scholar
Boersma, B.J., Brethouwer, G. & Nieuwstadt, F.T.M. 1998 A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10 (4), 899909.CrossRefGoogle Scholar
Bruneau, C.-H. 2000 Boundary conditions on artificial frontiers for incompressible and compressible Navier–Stokes equations. Math. Modelling Numer. Anal. 34, 303314.CrossRefGoogle Scholar
Bruneau, C.-H. & Fabrie, P. 1994 Effective downstream boundary conditions for incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 19, 693705.CrossRefGoogle Scholar
Bruneau, C.-H. & Fabrie, P. 1996 New efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness result. Math. Modelling Numer. Anal. 30, 815840.CrossRefGoogle Scholar
Charonko, J.J. & Prestridge, K. 2017 Variable-density mixing in turbulent jets with coflow. J. Fluid Mech. 825, 887921.CrossRefGoogle Scholar
Chen, C.J. & Rodi, W. 1980 Vertical Turbulent Buoyant Jets: A Review of Experimental Data. Elsevier Science & Technology.Google Scholar
Craske, J. & van Reeuwijk, M. 2015 Energy dispersion in turbulent jets. Part 1: direct simulation of steady and unsteady jets. J. Fluid Mech. 763, 500537.CrossRefGoogle Scholar
Craske, J., Salizzoni, P. & van Reeuwijk, M. 2017 The turbulent Prandtl number in a pure plume is 3/5. J. Fluid Mech. 822, 774790.CrossRefGoogle Scholar
Darisse, A., Lemay, J. & Benaïssa, A. 2013 Investigation of passive scalar mixing in a turbulent free jet using simultaneous LDV and cold wire measurements. Intl J. Heat Fluid Flow 44, 284292.CrossRefGoogle Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227 (15), 71257159.CrossRefGoogle Scholar
Djeridane, T., Amielh, M., Anselmet, F. & Fulachier, L. 1996 Velocity turbulence properties in the near-field region of axisymmetric variable density jets. Phys. Fluids 8 (6), 16141630.CrossRefGoogle Scholar
Ezzamel, A., Salizzoni, P. & Hunt, G.R. 2015 Dynamic variability of axisymmetric buoyant plumes. J. Fluid Mech. 765, 576611.CrossRefGoogle Scholar
Foysi, H., Mellado, J.P. & Sarkar, S. 2010 Large-eddy simulation of variable-density round and plane jets. Intl J. Heat Fluid Flow 31 (3), 307314.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3 (7), 17601765.CrossRefGoogle Scholar
Gharbi, A., Ruffin, E., Anselmet, F. & Schiestel, R. 1996 Numerical modelling of variable density turbulent jets. Intl J. Heat Mass Transfer 39 (9), 18651882.CrossRefGoogle Scholar
Hill, B.J. 1972 Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. J. Fluid Mech. 51 (4), 773779.CrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.CrossRefGoogle Scholar
Jarrin, N., Benhamadouche, S., Laurence, D. & Prosser, R. 2006 A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Intl J. Heat Fluid Flow 27 (4), 585593.CrossRefGoogle Scholar
Kaminski, E., Tait, S. & Carazzo, G. 2005 Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech. 526, 361376.CrossRefGoogle Scholar
Keagy, W.R. 1949 A study of freely expanding inhomogeneous jets. Proc. Heat Transfer Fluid Mech. Inst. 1, 8998.Google Scholar
Kyle, D.M. & Sreenivasan, K.R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.CrossRefGoogle Scholar
Lozano, A., Yip, B. & Hanson, R.K. 1992 Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp. Fluids 13, 369376.CrossRefGoogle Scholar
Mehaddi, R., Vaux, S., Candelier, F. & Vauquelin, O. 2015 On the modelling of steady turbulent fountains. Environ. Fluid Mech. 15 (6), 11151134.CrossRefGoogle Scholar
Milton-McGurk, L., Williamson, N., Armfield, S.W. & Kirkpatrick, M.P. 2020 Experimental investigation into turbulent negatively buoyant jets using combined piv and plif measurements. Intl J. Heat Fluid Flow 82, 108561.CrossRefGoogle Scholar
Milton-McGurk, L., Williamson, N., Armfield, S.W. & Kirkpatrick, M.P. 2022 Characterising entrainment in fountains and negatively buoyant jets. J. Fluid Mech. 939, A29.CrossRefGoogle Scholar
Milton-McGurk, L., Williamson, N., Armfield, S.W., Kirkpatrick, M.P. & Talluru, K.M. 2021 Entrainment and structure of negatively buoyant jets. J. Fluid Mech. 911, A21.CrossRefGoogle Scholar
Morton, B.R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Morton, B.R., Taylor, G.I. & Turner, J.S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Moutte, A. 2018 Etude de jets turbulents à masse volumique variable: impact de la variation de masse volumique sur la structure fine et le mélange. PhD thesis, Ecole Centrale de Marseille.Google Scholar
Nichols, J.W., Schmid, P.J. & Riley, J.J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Panchapakesan, N.R. & Lumley, J.L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. 246, 225247.CrossRefGoogle Scholar
Papantoniou, D. & List, E.J. 1989 Large-scale structure in the far field of buoyant jets. J. Fluid Mech. 209, 151190.CrossRefGoogle Scholar
Pietri, L., Amielh, M. & Anselmet, F. 2000 Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and laser doppler anemometry. Intl J. Heat Fluid Flow 21 (1), 2236.CrossRefGoogle Scholar
Pitts, W.M. 1991 a Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11 (2), 125134.CrossRefGoogle Scholar
Pitts, W.M. 1991 b Reynolds number effects on the mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11 (2), 135141.CrossRefGoogle Scholar
Priestley, C.H.B. & Ball, F.K. 1955 Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81 (348), 144157.CrossRefGoogle Scholar
van Reeuwijk, M. & Craske, J. 2015 Energy-consistent entrainment relations for jets and plumes. J. Fluid Mech. 782, 333355.CrossRefGoogle Scholar
van Reeuwijk, M., Salizzoni, P., Hunt, G.R. & Craske, J. 2016 Turbulent transport and entrainment in jets and plumes: a DNS study. Phys. Rev. Fluids 1, 074301.CrossRefGoogle Scholar
Ricou, F.P. & Spalding, D.B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.CrossRefGoogle Scholar
Rooney, G.G. 1997 Buoyant flows from fires in enclosures. PhD thesis, University of Cambridge.Google Scholar
Ruffin, E., Schiestel, R., Anselmet, F., Amielh, M. & Fulachier, L. 1994 Investigation of characteristic scales in variable density turbulent jets using a second-order model. Phys. Fluids 6 (8), 27852799.CrossRefGoogle Scholar
Sarathi, P., Gurka, R., Kopp, G.A. & Sullivan, P.J. 2011 A calibration scheme for quantitative concentration measurements using simultaneous PIV and PLIF. Exp. Fluids 52 (1), 247259.CrossRefGoogle Scholar
Sautet, J.C. & Stepowski, D. 1995 Dynamic behavior of variable-density turbulent jets in their near development fields. Phys. Fluids 7 (11), 27962806.CrossRefGoogle Scholar
Sciacchitano, A. & Wieneke, B. 2016 PIV uncertainty propagation. Meas. Sci. Technol. 27 (8), 084006.CrossRefGoogle Scholar
Thring, M.W. & Newby, M.P. 1953 Combustion length of enclosed turbulent jet flames. In Symposium (International) on Combustion, vol. 4, pp. 789–796.Google Scholar
Vaux, S., Mehaddi, R., Vauquelin, O. & Candelier, F. 2019 Upward versus downward non-Boussinesq turbulent fountains. J. Fluid Mech. 867, 374391.CrossRefGoogle Scholar
Viggiano, B., Dib, T., Ali, N., Mastin, L.G., Cal, R.B. & Solovitz, S.A. 2018 Turbulence, entrainment and low-order description of a transitional variable-density jet. J. Fluid Mech. 836, 10091049.CrossRefGoogle Scholar
Vreman, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16 (10), 36703681.CrossRefGoogle Scholar
Wang, P., Fröhlich, J., Michelassi, V. & Rodi, W. 2008 Large-eddy simulation of variable-density turbulent axisymmetric jets. Intl J. Heat Fluid Flow 29 (3), 654664.CrossRefGoogle Scholar
Wang, H. & Law, A.W.-K. 2002 Second-order integral model for round turbulent jet. J. Fluid Mech. 459, 397428.CrossRefGoogle Scholar
Way, J. & Libby, P.A. 1971 Application of hot-wire anemometry and digital techniques to measurements in a turbulent helium jet. AIAA J. 9 (8), 15671573.Google Scholar
Woods, A.W. 1997 A note on non-Boussinesq plumes in an incompressible stratified environment. J. Fluid Mech. 345, 347356.CrossRefGoogle Scholar
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38 (3), 577612.CrossRefGoogle Scholar