Skip to main content Accessibility help
×
×
Home

Turbulent wake behind a curved circular cylinder

  • José P. Gallardo (a1), Helge I. Andersson (a2) and Bjørnar Pettersen (a1)
Abstract

This paper reports results from a direct numerical simulation of the flow past a circular cylinder with axial curvature. The main objective is to explore the effects of spanwise curvature on the stability of the shear layers and the turbulent wake at the subcritical Reynolds number of 3900. The bluff-body geometry is adapted from a previous study conducted at lower Reynolds numbers, in which a quarter segment of a ring represented the deformed cylinder. A convex configuration in which the free-stream direction is towards the outer face of the ring is adopted here. The present results show a striking distinction between the upper and lower wake regions. Despite the turbulent character of the wake, the upper wake region is more coherent due to the periodic vortex shedding of primary vortical structures, which are in close alignment with the axial curvature. A mild axial flow develops upwards along the lee face of the curved cylinder, displacing the vortex formation region further downstream from the location expected for a straight cylinder at the same Reynolds number. In the lower wake region the vortex shedding strength is drastically reduced due to larger local inclination, resulting in higher three-dimensionality and loss of coherence. A strong downdraft with a swirling pattern is the dominating feature in the lower base region. This is associated with a substantial decrease of the base suction, and the suppression of the characteristic recirculating backflow.

Copyright
Corresponding author
Email address for correspondence: jose.p.gallardo@ntnu.no
References
Hide All
Barkley, D., Tuckerman, L. S. & Golubitsky, M. 2000 Bifurcation theory for three-dimensional flow in the wake of a circular cylinder. Phys. Rev. E 61, 52475252.
Bearman, P. W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21, 241255.
Bearman, P. W. & Takamoto, M. 1988 Vortex shedding behind rings and discs. Fluid Dyn. Res. 3, 214218.
Bloor, M. S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290304.
De Vecchi, A., Sherwin, S. J. & Graham, J. M. R. 2008 Wake dynamics of external flow past a curved circular cylinder with the free-stream aligned to the plane of curvature. J. Fluids Struct. 24, 12621270.
Dong, S., Karniadakis, G. E., Ekmekci, A. & Rockwell, D. 2006 A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185207.
Eisenlohr, H. & Eckelmann, H. 1989 Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number. Phys. Fluids A 1, 189192.
Gallardo, J. P., Pettersen, B. & Andersson, H. I. 2011 Dynamics in the turbulent wake of a curved circular cylinder. J. Phys.: Conf. Ser. 318, 06288.
Gallardo, J. P., Pettersen, B. & Andersson, H. I. 2013 Effects of free-slip boundary conditions on the flow around a curved circular cylinder. Comput. Fluids 86, 389394.
Gaster, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech. 46, 749756.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kravchenko, A. G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at $Re=3900$ . Phys. Fluids 12, 403417.
Leweke, T. & Provansal, M. 1995 The flow behind rings: bluff body wakes without end effects. J. Fluid Mech. 288, 265310.
Lucor, D. & Karniadakis, G. E. M. 2003 Effects of oblique inflow in vortex-induced vibrations. Flow Turbul. Combust. 71, 375389.
Ma, X., Karamanos, G.-S. & Karniadakis, G. E. 2000 Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 2965.
Manhart, M. 2004 A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33, 435461.
Manhart, M., Tremblay, F. & Friedrich, R. 2001 MGLET: a parallel code for efficient DNS and LES of complex geometries. In Parallel Computational Fluid Dynamics – Trends and Applications (ed. Jenssen, C. B., Andersson, H. I., Ecer, A., Satofuka, N., Kvamsdal, T., Pettersen, B., Periaux, J. & Fox, P.), pp. 449456. Elsevier.
Mansy, H., Yang, P.-M. & Williams, D. R. 1994 Quantitative measurements of three-dimensional structures in the wake of a circular cylinder. J. Fluid Mech. 270, 277296.
Matsumoto, M., Shiraishi, N., Kitazawa, M., Knisely, C., Shirato, H., Kim, Y. & Tsujii, M. 1990 Aerodynamic behaviour of inclined circular cylinders – cable aerodynamics. J. Wind Engng. Ind. Aerodyn. 33, 6372.
Miliou, A., De Vecchi, A., Sherwin, S. J. & Graham, J. M. R. 2007 Wake dynamics of external flow past a curved circular cylinder with the free stream aligned with the plane of curvature. J. Fluid Mech. 592, 89115.
Miliou, A., Sherwin, S. J. & Graham, J. M. R. 2003 Fluid dynamic loading on curved riser pipes. Trans. ASME: J. Offshore Mech. Arctic Engng 125, 176182.
Narasimhamurthy, V. D., Andersson, H. I. & Pettersen, B. 2008 Cellular vortex shedding in the wake of a tapered plate. J. Fluid Mech. 617, 355379.
Narasimhamurthy, V. D., Andersson, H. I. & Pettersen, B. 2009 Cellular vortex shedding behind a tapered circular cylinder. Phys. Fluids 21, 044106.
Norberg, C. Reynolds number and free-stream turbulence effects on the flow and fluid forces for a circular cylinder in cross flow. PhD thesis, Chalmers University of Technology, Gothenburg, Sweden.
Norberg, C. 1998 LDV-measurements in the near wake of a circular cylinder. In Proceedings of the Conference on Bluff Body Wakes and Vortex-Induced Vibration (ed. Bearman, P. W. & Williamson, C. H. K.), pp. 112. Cornell University, Ithaca, NY.
Ong, L. & Wallace, J. 1996 The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441453.
Parnaudeau, P., Carlier, J., Heitz, D. & Lamballais, E. 2008 Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20, 085101.
Peller, N. 2010 Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. Dr.-Ing. thesis, Technische Universität München.
Peller, N., Le Duc, A., Tremblay, F. & Manhart, M. 2006 High-order stable interpolations for immersed boundary methods. Intl J. Numer. Meth. Fluids 52, 11751193.
Prasad, A. & Williamson, C. H. K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.
Rai, M. M. 2010 A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder. J. Fluid Mech. 659, 375404.
Ramberg, S. E. 1983 The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. J. Fluid Mech. 128, 81107.
Razali, S. F. M., Zhou, T., Rinoshika, A. & Cheng, L. 2010 Wavelet analysis of the turbulent wake generated by an inclined circular cylinder. J. Turbul 11, 125.
Roshko, A. 1993 Perspectives on bluff body aerodynamics. J. Wind Engng. Ind. Aerodyn. 49, 79100.
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory. Springer.
Stone, H. L. 1968 Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5, 530558.
Takamoto, M. & Izumi, K. 1981 Experimental observation of stable arrangement of vortex rings. Phys. Fluids 24 (8), 15821583.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Volino, R. J., Schultz, M. P. & Pratt, C. M. 2003 Conditional sampling in a transitional boundary layer under high free stream turbulence conditions. Trans. ASME: J. Fluids Engng. 125, 2837.
Wang, H. F., Mohd Razali, S. F., Zhou, T. M., Zhou, Y. & Cheng, L. 2011 Streamwise evolution of an inclined cylinder wake. Exp. Fluids 51, 553570.
Williamson, C. H. K. 1996a Three-dimensional wake transition. J. Fluid Mech. 328, 345407.
Williamson, C. H. K. 1996b Vortex dynamics in the cylinder wake. Annu. Rev. Fluid. Mech 28, 477539.
Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 4856.
Zdravkovich, M. M. 1997 Flow Around Circular Cylinders, Vol. 1 Fundamentals. Oxford University Press.
Zhao, M., Cheng, L. & Zhou, T. 2009 Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. J. Fluids Struct. 25, 831847.
Zhou, T., Razali, S. F. M., Zhou, Y., Chua, L. P. & Cheng, L. 2009 Dependence of the wake on inclination of a stationary cylinder. Exp. Fluids 46, 11251138.
Zhou, T., Wang, H., Razali, S. F. M., Zhou, Y. & Cheng, L. 2010 Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Phys. Fluids 22, 015108.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Supplementary materials

Gallardo et al. supplementary movie
Animation shows the occurrence of instabilities in the upper and lower shear layers at z/D=8, 12, 16 and 21. Traces of the cross-stream velocity show the high amplitude velocity fluctuations arising from this instability.

 Video (7.6 MB)
7.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed