Skip to main content Accessibility help
×
×
Home

Two-dimensional gyrokinetic turbulence

  • G. G. PLUNK (a1) (a2) (a3), S. C. COWLEY (a4) (a5), A. A. SCHEKOCHIHIN (a5) (a6) (a7) and T. TATSUNO (a1)
Abstract

Two-dimensional gyrokinetics is a simple paradigm for the study of kinetic magnetised plasma turbulence. In this paper, we present a comprehensive theoretical framework for this turbulence. We study both the inverse and direct cascades (the ‘dual cascade’), driven by a homogeneous and isotropic random forcing. The key characteristic length of gyrokinetics, the Larmor radius, divides scales into two physically distinct ranges. For scales larger than the Larmor radius, we derive the familiar Charney–Hasegawa–Mima equation from the gyrokinetic system, and explain its relationship to gyrokinetics. At scales smaller than the Larmor radius, a dual cascade occurs in phase space (two dimensions in position space plus one dimension in velocity space) via a nonlinear phase-mixing process. We show that at these sub-Larmor scales, the turbulence is self-similar and exhibits power-law spectra in position and velocity space. We propose a Hankel-transform formalism to characterise velocity-space spectra. We derive the exact relations for third-order structure functions, analogous to Kolmogorov's four-fifths and Yaglom's four-thirds laws and valid at both long and short wavelengths. We show how the general gyrokinetic invariants are related to the particular invariants that control the dual cascade in the long- and short-wavelength limits. We describe the full range of cascades from the fluid to the fully kinetic range.

Copyright
Corresponding author
Email address for correspondence: gplunk@umd.edu
References
Hide All
Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. Part I. Theory. Phys. Plasmas 15, 122509.
Antonsen, T. M. & Lane, B. 1980 Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Phys. Fluids 23, 12051214.
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, II233II239.
Bernard, D. 1999 Three-point velocity correlation functions in two-dimensional forced turbulence. Phys. Rev. E 60, 61846187.
Boffetta, G., Lillo, F. De & Musacchio, S. 2002 Inverse cascade in Charney–Hasegawa–Mima turbulence. Europhys. Lett. 59, 687693.
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.
Catto, P. J. & Tsang, K. T. 1977 Linearized gyrokinetic equation with collisions. Phys. Fluids 20, 396401.
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.
Dorland, W. & Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812835.
Fjørtoft, R. 1953 On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow. Tellus 5, 225.
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Görler, T. & Jenko, F. 2008 Multiscale features of density and frequency spectra from nonlinear gyrokinetics. Phys. Plasmas 15, 102508.
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 8792.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103.
Kolmogorov, A. N. 1941 Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.
Krommes, J. A. 2002 Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep. 360, 1352.
Krommes, J. A. & Hu, G. 1994 The role of dissipation in the theory and simulations of homogeneous plasma turbulence, and resolution of the entropy paradox. Phys. Plasmas 1, 32113238.
Lesieur, M. & Herring, J. 1985 Diffusion of a passive scalar in two-dimensional turbulence. J. Fluid Mech. 161, 7795.
Obukhov, A. M. 1941 a On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.
Obukhov, A. M. 1941 b Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR Ser. Geogr. Geofiz. 5, 453466.
Rutherford, P. H. & Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569585.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 124024.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310377.
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 23792394.
Tatsuno, T., Barnes, M., Cowley, S. C., Dorland, W., Howes, G. G., Numata, R., Plunk, G. G. & Schekochihin, A. A. 2010 a Gyrokinetic simulation of entropy cascade in two-dimensional electrostatic turbulence. J. Plasma Fusion Res. Ser. 9, 509.
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. & Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103, 015003.
Taylor, J. B. & Hastie, R. J. 1968 Stability of general plasma equilibria. Part I. Formal theory. Plasma Phys. 10, 479494.
Taylor, J. B. & McNamara, B. 1971 Plasma diffusion in two dimensions. Phys. Fluids 14, 14921499.
Watanabe, T.-H. & Sugama, H. 2004 Kinetic simulation of steady states of ion temperature gradient driven turbulence with weak collisionality. Phys. Plasmas 11, 14761483.
Yaglom, A. M. 1949 On the local structure of a temperature field in a turbulent flow. Dokl. Akad. Nauk. SSSR 69, 743.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed