Skip to main content
×
Home
    • Aa
    • Aa

The unifying theory of scaling in thermal convection: the updated prefactors

  • Richard J. A. M. Stevens (a1) (a2), Erwin P. van der Poel (a2), Siegfried Grossmann (a3) and Detlef Lohse (a2)
Abstract
Abstract

The unifying theory of scaling in thermal convection (Grossmann & Lohse, J. Fluid. Mech., vol. 407, 2000, pp. 27–56; henceforth the GL theory) suggests that there are no pure power laws for the Nusselt and Reynolds numbers as function of the Rayleigh and Prandtl numbers in the experimentally accessible parameter regime. In Grossmann & Lohse (Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319) the dimensionless parameters of the theory were fitted to 155 experimental data points by Ahlers & Xu (Phys. Rev. Lett., vol. 86, 2001, pp. 3320–3323) in the regime $3\times 1{0}^{7} \leq \mathit{Ra}\leq 3\times 1{0}^{9} $ and $4\leq \mathit{Pr}\leq 34$ and Grossmann & Lohse (Phys. Rev. E, vol. 66, 2002, p. 016305) used the experimental data point from Qiu & Tong (Phys. Rev. E, vol. 64, 2001, p. 036304) and the fact that $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ is independent of the parameter $a$ , which relates the dimensionless kinetic boundary thickness with the square root of the wind Reynolds number, to fix the Reynolds number dependence. Meanwhile the theory is, on the one hand, well-confirmed through various new experiments and numerical simulations; on the other hand, these new data points provide the basis for an updated fit in a much larger parameter space. Here we pick four well-established (and sufficiently distant) $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ data points and show that the resulting $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ function is in agreement with almost all established experimental and numerical data up to the ultimate regime of thermal convection, whose onset also follows from the theory. One extra $\mathit{Re}(\mathit{Ra}, \mathit{Pr})$ data point is used to fix $\mathit{Re}(\mathit{Ra}, \mathit{Pr})$ . As $\mathit{Re}$ can depend on the definition and the aspect ratio, the transformation properties of the GL equations are discussed in order to show how the GL coefficients can easily be adapted to new Reynolds number data while keeping $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ unchanged.

Copyright
Corresponding author
Email addresses for correspondence: r.j.a.m.stevens@utwente.nl, d.lohse@utwente.nl
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.

G. Ahlers , E. Bodenschatz , D. Funfschilling , S. Grossmann , X. He , D. Lohse , R. J. A. M. Stevens & R. Verzicco 2012a Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.

G. Ahlers , S. Grossmann & D. Lohse 2009b Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.

G. Ahlers & X. Xu 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.

M. Breuer , S. Wessling , J. Schmalzl & U. Hansen 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69, 026302.

E. Brown , D. Funfschilling , A. Nikolaenko & G. Ahlers 2005 Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top- and bottom conductivity. Phys. Fluids 17, 075108.

Y. Burnishev , E. Segre & V. Steinberg 2010 Strong symmetrical non-Oberbeck–Boussinesq turbulent convection and the role of compressibility. Phys. Fluids 22, 035108.

X. Chavanne , F. Chilla , B. Castaing , B. Hebral , B. Chabaud & J. Chaussy 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.

X. Chavanne , F. Chilla , B. Chabaud , B. Castaing & B. Hebral 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.

A. S. Fleischer & R. J. Goldstein 2002 High-Rayleigh-number convection of pressurized gases in a horizontal enclosure. J. Fluid Mech. 469, 112.

J. A. Glazier , T. Segawa , A. Naert & M. Sano 1999 Evidence against ultrahard thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.

S. Grossmann & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann & D. Lohse 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.

S. Grossmann & D. Lohse 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.

S. Grossmann & D. Lohse 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.

X. He , D. Funfschilling , H. Nobach , E. Bodenschatz & G. Ahlers 2012b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.

X. He , G. He & P. Tong 2010 Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis. Phys. Rev. E 81, 065303.

X. He & P. Tong 2011 Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E 83, 037302.

G. W. He & J. B. Zhang 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73, 055303.

S. Horanyi , L. Krebs & U. Müller 1999 Turbulent Rayleigh–Bénard convection in low Prandtl number fluids. Intl J. Heat Mass Transfer 42, 39834003.

R. Lakkaraju , R. J. A. M. Stevens , R. Verzicco , S. Grossmann , A. Prosperetti , C. Sun & D. Lohse 2012 Spatial distribution of heat flux and fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 86, 056315.

L. D. Landau & E. M. Lifshitz 1987 Fluid Mechanics. Pergamon.

D. Lohse & K. Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

J. Niemela , L. Skrbek , K. R. Sreenivasan & R. Donnelly 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.

K. Petschel , S. Stellmach , M. Wilczek , J. Lülff & U. Hansen 2013 Dissipation layers in Rayleigh–Bénard convection: a unifying view. Phys. Rev. Lett. 110, 114502.

X. L. Qiu & P. Tong 2001 Large scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.

P. E. Roche , B. Castaing , B. Chabaud , B. Hebral & J. Sommeria 2001 Side wall effects in Rayleigh–Bénard experiments. Eur. Phys. J. B 24, 405408.

P.-E. Roche , F. Gauthier , R. Kaiser & J. Salort 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.

O. Shishkina , R. J. A. M. Stevens , S. Grossmann & D. Lohse 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.

E. D. Siggia 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.

R. J. A. M. Stevens , H. J. H. Clercx & D. Lohse 2010a Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22, 085103.

R. J. A. M. Stevens , H. J. H. Clercx & D. Lohse 2010b Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection. New J. Phys. 12, 075005.

R. J. A. M. Stevens , J. Overkamp , D. Lohse & H. J. H. Clercx 2011b Effect of aspect-ratio on vortex distribution and heat transfer in rotating Rayleigh–Bénard convection. Phys. Rev. E 84, 056313.

C. Sun & K.-Q. Xia 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72, 067302.

P. Urban , P. Hanzelka , T. Kralik , V. Musilova , A. Srnka & L. Skrbek 2012 Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers. Phys. Rev. Lett. 109, 154301.

P. Urban , V. Musilová & L. Skrbek 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.

R. Verzicco 2002 Sidewall finite conductivity effects in confined turbulent thermal convection. J. Fluid Mech. 473, 201210.

K.-Q. Xia , S. Lam & S. Q. Zhou 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.

X. Zhao & G.-W. He 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 114 *
Loading metrics...

Abstract views

Total abstract views: 197 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.