Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-07T13:53:24.971Z Has data issue: false hasContentIssue false

Unsteady drag force on an immersed sphere oscillating near a wall

Published online by Cambridge University Press:  14 December 2023

Zaicheng Zhang
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
Vincent Bertin
Affiliation:
Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, Department of Science and Technology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, 7500, Enschede, The Netherlands
Martin H. Essink
Affiliation:
Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, Department of Science and Technology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, 7500, Enschede, The Netherlands
Hao Zhang
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
Nicolas Fares
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
Zaiyi Shen
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China
Thomas Bickel
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
Thomas Salez*
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
Abdelhamid Maali*
Affiliation:
Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
*
Email addresses for correspondence: thomas.salez@cnrs.fr, abdelhamid.maali@u-bordeaux.fr
Email addresses for correspondence: thomas.salez@cnrs.fr, abdelhamid.maali@u-bordeaux.fr

Abstract

The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Basset, A.B. 1888 A Treatise on Hydrodynamics, vol. 2. Deighton, Bell and Co.Google Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Benmouna, F. & Johannsmann, D. 2002 Hydrodynamic interaction of AFM cantilevers with solid walls: an investigation based on AFM noise analysis. Eur. Phys. J. E 9, 435441.CrossRefGoogle ScholarPubMed
Bertin, V., Zhang, Z., Boisgard, R., Grauby-Heywang, C., Raphaël, E., Salez, T. & Maali, A. 2021 Contactless rheology of finite-size air–water interfaces. Phys. Rev. Res. 3 (3), L032007.CrossRefGoogle Scholar
Bowles, A.P., Honig, C.D.F. & Ducker, W.A. 2011 No-slip boundary condition for weak solid–liquid interactions. J. Phys. Chem. C 115 (17), 86138621.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.CrossRefGoogle Scholar
Bruot, N., Cicuta, P., Bloomfield-Gadêlha, H., Goldstein, R.E., Kotar, J., Lauga, E. & Nadal, F. 2021 Direct measurement of unsteady microscale stokes flow using optically driven microspheres. Phys. Rev. Fluids 6 (5), 053102.CrossRefGoogle Scholar
Butt, H.-J. 1991 Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60 (6), 14381444.CrossRefGoogle Scholar
Butt, H.-J., Cappella, B. & Kappl, M. 2005 Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59 (1–6), 1152.CrossRefGoogle Scholar
Clarke, R.J., Cox, S.M., Williams, P.M. & Jensen, O.E. 2005 The drag on a microcantilever oscillating near a wall. J. Fluid Mech. 545, 397426.CrossRefGoogle Scholar
Comtet, J., Chatté, G., Nigues, A., Bocquet, L., Siria, A. & Colin, A. 2017 a Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8 (1), 15633.CrossRefGoogle ScholarPubMed
Comtet, J., Lainé, A., Nigues, A., Bocquet, L. & Siria, A. 2019 Atomic rheology of gold nanojunctions. Nature 569 (7756), 393397.CrossRefGoogle ScholarPubMed
Comtet, J., Niguès, A., Kaiser, V., Coasne, B., Bocquet, L. & Siria, A. 2017 b Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nat. Mater. 16 (6), 634639.CrossRefGoogle ScholarPubMed
Cottin-Bizonne, C., Barrat, J.-L., Bocquet, L. & Charlaix, E. 2003 Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2 (4), 237240.CrossRefGoogle ScholarPubMed
Cox, R.G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface – II. Small gap widths, including inertial effects. Chem. Engng Sci. 22 (12), 17531777.CrossRefGoogle Scholar
Craig, V.S.J. & Neto, C. 2001 In situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall. Langmuir 17 (19), 60186022.CrossRefGoogle Scholar
Cross, B., Barraud, C., Picard, C., Léger, L., Restagno, F. & Charlaix, É. 2018 Wall slip of complex fluids: interfacial friction versus slip length. Phys. Rev. Fluids 3 (6), 062001.CrossRefGoogle Scholar
Devailly, C., Bouriat, P., Dicharry, C., Risso, F., Ondarçuhu, T. & Tordjeman, P. 2020 Long-range hydrodynamic forces in liquid FM-AFM. Nanotechnology 31 (45), 455501.CrossRefGoogle ScholarPubMed
Dincau, B., Dressaire, E. & Sauret, A. 2020 Pulsatile flow in microfluidic systems. Small 16 (9), 1904032.CrossRefGoogle ScholarPubMed
Ducker, W.A., Senden, T.J. & Pashley, R.M. 1991 Direct measurement of colloidal forces using an atomic force microscope. Nature 353 (6341), 239241.CrossRefGoogle Scholar
El-Kareh, A.W. 1989 I. On a new constitutive equation for non-Newtonian fluids II. Brownian motion with fluid–fluid interfaces. PhD thesis, California Institute of Technology.Google Scholar
Felderhof, B.U. 2005 Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. J. Phys. Chem. B 109 (45), 2140621412.CrossRefGoogle ScholarPubMed
Felderhof, B.U. 2012 Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition. Phys. Rev. E 85 (4), 046303.CrossRefGoogle Scholar
Fouxon, I. & Leshansky, A. 2018 Fundamental solution of unsteady Stokes equations and force on an oscillating sphere near a wall. Phys. Rev. E 98 (6), 063108.CrossRefGoogle Scholar
Fouxon, I., Rubinstein, B., Weinstein, O. & Leshansky, A. 2020 Fluid-mediated force on a particle due to an oscillating plate and its effect on deposition measurements by a quartz crystal microbalance. Phys. Rev. Lett. 125 (14), 144501.CrossRefGoogle Scholar
Gatignol, R. 1983 The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Méc. Théor. Appl. 2, 143–60.Google Scholar
Guan, D., Charlaix, E., Qi, R.Z. & Tong, P. 2017 Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dual-frequency modulation. Phys. Rev. Appl. 8 (4), 044010.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.CrossRefGoogle Scholar
Honig, C.D.F., Sader, J.E., Mulvaney, P. & Ducker, W.A. 2010 Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope. Phys. Rev. E 81 (5), 056305.CrossRefGoogle ScholarPubMed
Jai, C., Cohen-Bouhacina, T. & Maali, A. 2007 Analytical description of the motion of an acoustic-driven atomic force microscope cantilever in liquid. Appl. Phys. Lett. 90 (11), 113512.CrossRefGoogle Scholar
Kiracofe, D. & Raman, A. 2011 Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory. Nanotechnology 22 (48), 485502.CrossRefGoogle ScholarPubMed
Kotas, C.W., Yoda, M. & Rogers, P.H. 2007 Visualization of steady streaming near oscillating spheroids. Exp. Fluids 42 (1), 111121.CrossRefGoogle Scholar
Ku, D.N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29 (1), 399434.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6. Pergamon Press.Google Scholar
Leroy, S. & Charlaix, E. 2011 Hydrodynamic interactions for the measurement of thin film elastic properties. J. Fluid Mech. 674, 389407.CrossRefGoogle Scholar
Leroy, S., Steinberger, A., Cottin-Bizonne, C., Restagno, F., Léger, L. & Charlaix, E. 2012 Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe for soft thin films. Phys. Rev. Lett. 108 (26), 264501.CrossRefGoogle Scholar
Liu, F., Klaassen, A., Zhao, C., Mugele, F. & Van Den Ende, D. 2018 Electroviscous dissipation in aqueous electrolyte films with overlapping electric double layers. J. Phys. Chem. B 122 (2), 933946.CrossRefGoogle ScholarPubMed
Liu, F., Zhao, C., Mugele, F. & van den Ende, D. 2015 Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable? Nanotechnology 26 (38), 385703.CrossRefGoogle ScholarPubMed
Lorentz, H.A. 1907 Ein allgemeiner satz, die bewegung einer reibenden flüssigkeit betreffend, nebst einigen anwendungen desselben. Abh. Theor. Phys. 1, 23.Google Scholar
Lovalenti, P.M. & Brady, J.F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.CrossRefGoogle Scholar
Maali, A. & Boisgard, R. 2013 Precise damping and stiffness extraction in acoustic driven cantilever in liquid. J. Appl. Phys. 114 (14), 144302.CrossRefGoogle Scholar
Maali, A., Boisgard, R., Chraibi, H., Zhang, Z., Kellay, H. & Würger, A. 2017 Viscoelastic drag forces and crossover from no-slip to slip boundary conditions for flow near air–water interfaces. Phys. Rev. Lett. 118 (8), 084501.CrossRefGoogle ScholarPubMed
Maali, A., Cohen-Bouhacina, T. & Kellay, H. 2008 Measurement of the slip length of water flow on graphite surface. Appl. Phys. Lett. 92 (5), 053101.CrossRefGoogle Scholar
Manica, R., Klaseboer, E. & Chan, D.Y.C. 2016 The impact and bounce of air bubbles at a flat fluid interface. Soft Matter 12 (13), 32713282.CrossRefGoogle Scholar
Manor, O., Vakarelski, I.U., Tang, X., O'Shea, S.J., Stevens, G.W., Grieser, F., Dagastine, R.R. & Chan, D.Y.C. 2008 Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces. Phys. Rev. Lett. 101 (2), 024501.CrossRefGoogle ScholarPubMed
Masoud, H. & Stone, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879, P1.CrossRefGoogle Scholar
Maude, A.D. 1961 End effects in a falling-sphere viscometer. Br. J. Appl. Phys. 12 (6), 293.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Mo, J. & Raizen, M.G. 2019 Highly resolved Brownian motion in space and in time. Annu. Rev. Fluid Mech. 51, 403428.CrossRefGoogle Scholar
Otto, F., Riegler, E.K. & Voth, G.A. 2008 Measurements of the steady streaming flow around oscillating spheres using three dimensional particle tracking velocimetry. Phys. Fluids 20 (9), 093304.CrossRefGoogle Scholar
Redaelli, T., Candelier, F., Mehaddi, R., Eloy, C. & Mehlig, B. 2023 Hydrodynamic force on a small squirmer moving with a time-dependent velocity at small Reynolds numbers. J. Fluid Mech. 973, A11.Google Scholar
Reynolds, O. 1886 IV. On the theory of lubrication and its application to Mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 177, 157234.Google Scholar
Rodríguez Matus, M., Zhang, Z., Benrahla, Z., Majee, A., Maali, A. & Würger, A. 2022 Electroviscous drag on squeezing motion in sphere–plane geometry. Phys. Rev. E 105, 064606.CrossRefGoogle ScholarPubMed
Sader, J.E. 1998 Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84 (1), 6476.CrossRefGoogle Scholar
Shapiro, A.H., Jaffrin, M.Y. & Weinberg, S.L. 1969 Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37 (4), 799825.CrossRefGoogle Scholar
Simha, A., Mo, J. & Morrison, P.J. 2018 Unsteady Stokes flow near boundaries: the point-particle approximation and the method of reflections. J. Fluid Mech. 841, 883924.CrossRefGoogle Scholar
Vakarelski, I.U., Manica, R., Tang, X., O'Shea, S.J., Stevens, G.W., Grieser, F., Dagastine, R.R. & Chan, D.Y.C. 2010 Dynamic interactions between microbubbles in water. Proc. Natl Acad. Sci. 107 (25), 1117711182.CrossRefGoogle ScholarPubMed
Villey, R., Martinot, E., Cottin-Bizonne, C., Phaner-Goutorbe, M., Léger, L., Restagno, F. & Charlaix, E. 2013 Effect of surface elasticity on the rheology of nanometric liquids. Phys. Rev. Lett. 111 (21), 215701.CrossRefGoogle ScholarPubMed
Wang, S. & Ardekani, A.M. 2012 Unsteady swimming of small organisms. J. Fluid Mech. 702, 286297.CrossRefGoogle Scholar
Wang, Y., Zeng, B., Alem, H.T., Zhang, Z., Charlaix, E. & Maali, A. 2018 Viscocapillary response of gas bubbles probed by thermal noise atomic force measurement. Langmuir 34 (4), 13711375.CrossRefGoogle ScholarPubMed
Wei, D., Dehnavi, P.G., Aubin-Tam, M.-E. & Tam, D. 2019 Is the zero Reynolds number approximation valid for ciliary flows? Phys. Rev. Lett. 122 (12), 124502.CrossRefGoogle ScholarPubMed
Wei, D., Dehnavi, P.G., Aubin-Tam, M.-E. & Tam, D. 2021 Measurements of the unsteady flow field around beating cilia. J. Fluid Mech. 915, A70.CrossRefGoogle Scholar
Zhang, Z., Arshad, M., Bertin, V., Almohamad, S., Raphael, E., Salez, T. & Maali, A. 2022 Contactless rheology of soft gels over a broad frequency range. Phys. Rev. Appl. 17, 064045.CrossRefGoogle Scholar
Zhao, C., Zhang, W., van den Ende, D. & Mugele, F. 2020 Electroviscous effects on the squeezing flow of thin electrolyte solution films. J. Fluid Mech. 888, A29.CrossRefGoogle Scholar
van Zwieten, J.S.B., van Zwieten, G.J. & Hoitinga, W. 2022 Nutils 7.0.Google Scholar