Skip to main content Accessibility help
×
Home

Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number

  • Vito Pasquariello (a1), Stefan Hickel (a2) and Nikolaus A. Adams (a1)

Abstract

We analyse the low-frequency dynamics of a high Reynolds number impinging shock-wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow separation. The flow configuration for our grid-converged large-eddy simulations (LES) reproduces recent experiments for the interaction of a Mach 3 turbulent boundary layer with an impinging shock that nominally deflects the incoming flow by $19.6^{\circ }$ . The Reynolds number based on the incoming boundary-layer thickness of $Re_{\unicode[STIX]{x1D6FF}_{0}}\approx 203\times 10^{3}$ is considerably higher than in previous LES studies. The very long integration time of $3805\unicode[STIX]{x1D6FF}_{0}/U_{0}$ allows for an accurate analysis of low-frequency unsteady effects. Experimental wall-pressure measurements are in good agreement with the LES data. Both datasets exhibit the distinct plateau within the separated-flow region of a strong SWBLI. The filtered three-dimensional flow field shows clear evidence of counter-rotating streamwise vortices originating in the proximity of the bubble apex. Contrary to previous numerical results on compression ramp configurations, these Görtler-like vortices are not fixed at a specific spanwise position, but rather undergo a slow motion coupled to the separation-bubble dynamics. Consistent with experimental data, power spectral densities (PSD) of wall-pressure probes exhibit a broadband and very energetic low-frequency component associated with the separation-shock unsteadiness. Sparsity-promoting dynamic mode decompositions (SPDMD) for both spanwise-averaged data and wall-plane snapshots yield a classical and well-known low-frequency breathing mode of the separation bubble, as well as a medium-frequency shedding mode responsible for reflected and reattachment shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further identifies streamwise streaks at low frequencies that cause large-scale flapping of the reattachment line. The PSD and SPDMD results of our impinging SWBLI support the theory that an intrinsic mechanism of the interaction zone is responsible for the low-frequency unsteadiness, in which Görtler-like vortices might be seen as a continuous (coherent) forcing for strong SWBLI.

Copyright

Corresponding author

Email address for correspondence: vito.pasquariello@tum.de

References

Hide All
Adams, N. A. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re 𝜃 = 1685. J. Fluid Mech. 420, 4783.
Agostini, L., Larchevêque, L., Dupont, P., Debiève, J.-F. & Dussauge, J.-P. 2012 Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50 (6), 13771387.
Andreopoulos, J. & Muck, K. C. 1987 Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows. J. Fluid Mech. 180, 405428.
Aubard, G., Gloerfelt, X. & Robinet, J.-C. 2013 Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51 (10), 23952409.
Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40, 24122422.
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J. K. 2014 Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 562.
Bookey, P., Wyckham, C., Smits, A. & Martín, M. P. 2005 New experimental data of STBLI at DNS/LES accessible Reynolds numbers. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reston, Virigina, pp. 118. American Institute of Aeronautics and Astronautics.
Carrière, P., Sirieix, M. & Solignae, J.-L. 1969 Similarity properties of the laminar or turbulent separation phenomena in a non-uniform supersonic flow. In Applied Mechanics – Proceedings of the Twelfth International Congress of Applied Mechanics, pp. 145157. Springer.
Clemens, N. T. & Narayanaswamy, V. 2009 Shock/turbulent boundary layer interactions: review of recent work on sources of unsteadiness (invited). In 39th AIAA Fluid Dynamics Conference, Reston, Virigina, pp. 125. American Institute of Aeronautics and Astronautics.
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46 (1), 469492.
Coles, D. E.1962 The turbulent boundary layer in a compressible fluid. Tech. Rep. R-403-PR.
Coles, D. L.1953 Measurements in the boundary layer on a smooth flat plate in supersonic flow. PhD thesis, California Institute of Technology.
Daub, D., Willems, S. & Gülhan, A. 2015 Experimental results on unsteady shock-wave/boundary-layer interaction induced by an impinging shock. CEAS Space J. 8 (1), 312.
Daub, D., Willems, S. & Gülhan, A. 2016 Experiments on the interaction of a fast-moving shock with an elastic panel. AIAA J. 54 (2), 670678.
Délery, J. & Dussauge, J.-P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19 (6), 453468.
Délery, J. & Marvin, J. G.1986 Shock-wave boundary layer interactions. AGARD-AG Tech. Rep. 280.
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.
Dolling, D. S. & Erengil, M. E. 1991 Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA J. 29, 728735.
Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21 (12), 16281634.
Dolling, D. S. & Or, C. T. 1985 Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 3 (1), 2432.
van Driest, E. R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15, 2641.
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.
Dupont, P., Haddad, C. & Debiève, J.-F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.
Dussauge, J.-P., Dupont, P. & Debiève, J.-F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10 (2), 8591.
Erdos, J. & Pallone, A. 1963 Shock-boundary layer interaction and flow separations. In Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute.
Erengil, M. E. & Dolling, D. S.1993 Physical causes of separation shock unsteadiness in shock-wave/turbulent boundary layer interactions. AIAA Paper 93–3134.
Fernholz, H. H. & Finley, P. J.1977 A critical compilation of compressible turbulent boundary layer data. AGARD-AG Tech. Rep. 223.
Floryan, J. M. 1991 On the Görtler instability of boundary layers. Prog. Aerosp. Sci. 28 (3), 235271.
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.
Gatski, T. B. & Bonnet, J.-P. 2009 Compressibility, Turbulence and High Speed Flow. Elsevier.
Ginoux, J. J. 1971 Streamwise vortices in reattaching high-speed flows – A suggested approach. AIAA J. 9 (4), 759760.
Görtler, H. 1941 Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen dreidimensionalen Störungen. Z. Angew. Math. Mech. 21 (4), 250252.
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. Am. Math. Soc. 67 (221), 7385.
Grilli, M., Hickel, S. & Adams, N. A. 2013 Large-eddy simulation of a supersonic turbulent boundary layer over a compression expansion ramp. Intl J. Heat Fluid Flow 42, 7993.
Grilli, M., Schmid, P. J., Hickel, S. & Adams, N. A. 2012 Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 1628.
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.
Guiho, F., Alizard, F. & Robinet, J.-Ch. 2016 Instabilities in oblique shock wave/laminar boundary-layer interactions. J. Fluid Mech. 789, 135.
Hadjadj, A. 2012 Large-eddy simulation of shock/boundary-layer interaction. AIAA J. 50 (12), 29192927.
Hickel, S., Adams, N. A. & Domaradzki, J. A. 2006 An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213 (1), 413436.
Hickel, S., Egerer, C. P. & Larsson, J. 2014 Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction. Phys. Fluids 26 (10), 106101.
Hopkins, E. J. & Inouye, M. 1971 An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J. 9 (6), 9931003.
Hou, Y. X., Clemens, N. T. & Dolling, D.2003 Wide-field study of shock-induced turbulent boundary layer separation. In 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA.
Humble, R. A., Elsinga, G. E., Scarano, F. & van Oudheusden, B. W. 2009 Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J. Fluid Mech. 622, 3362.
Jovanović, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.
Kistler, A. L. 1964 Fluctuating wall pressure under a separated supersonic flow. J. Acoust. Soc. Am. 36 (3), 543550.
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large Eddy simulations. J. Comput. Phys. 186, 652665.
Komminaho, J. & Skote, M. 2002 Reynolds stress budgets in Couette and boundary layer flows. Flow Turbul. Combust. 68 (2), 167192.
Kottke, V. 1988 On the instability of laminar boundary layers along concave walls towards Görtler vortices. In Propagation in Systems Far from Equilibrium, Springer Series in Synergetics, Berlin, Heidelberg, vol. 41, pp. 390398. Springer.
Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy Simulations of Turbulence. Cambridge University Press.
Loginov, M. S., Adams, N. A. & Zheltovodov, A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135.
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.
Matheis, J. & Hickel, S. 2015 On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200234.
Morgan, B., Duraisamy, K., Nguyen, N., Kawai, S. & Lele, S. K. 2013 Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729, 231284.
Naidoo, K. & Skews, B. W. 2011 Dynamic effects on the transition between two-dimensional regular and Mach reflection of shock waves in an ideal, steady supersonic free stream. J. Fluid Mech. 676, 432460.
Nichols, J. W., Larsson, J., Bernardini, M. & Pirozzoli, S. 2016 Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31 (1), 3350.
Pasquariello, V., Grilli, M., Hickel, S. & Adams, N. A. 2014 Large-eddy simulation of passive shock-wave/boundary-layer interaction control. Intl J. Heat Fluid Flow 49, 116127.
Piponniau, S., Dussauge, J.-P., Debiève, J.-F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87.
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2. 25. Phys. Fluids 18 (6), 065113.
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25. Phys. Fluids 16 (3), 530545.
Pirozzoli, S., Larsson, J., Nichols, J. W., Morgan, B. E. & Lele, S. K. 2010 Analysis of unsteady effects in shock/boundary layer interactions. In Proceedings of the 2010 CTR Summer Program. Center of Turbulence Research.
Plotkin, K. J. 1975 Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13 (8), 10361040.
Priebe, S. & Martín, M. P. 2012 Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 149.
Priebe, S., Tu, J. H., Rowley, C. W. & Martín, M. P. 2016 Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441477.
Priebe, S., Wu, M. & Martín, M. P. 2009 Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction. AIAA J. 47 (5), 11731185.
Quaatz, J. F., Giglmaier, M., Hickel, S. & Adams, N. A. 2014 Large-eddy simulation of a pseudo-shock system in a Laval nozzle. Intl J. Heat Fluid Flow 49, 108115.
Ringuette, M. J., Bookey, P. B., Wyckham, C. & Smits, A. J. 2009 Experimental study of a Mach 3 compression ramp interaction at Re 𝜃 = 2400. AIAA J. 47 (2), 373385.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Sandham, N. D. 2016 Effects of compressibility and shock-wave interactions on turbulent shear flows. Flow Turbul. Combust. 97 (1), 125.
Sansica, A., Sandham, N. D. & Hu, Z. 2014 Forced response of a laminar shock-induced separation bubble. Phys. Fluids 26 (9), 093601.
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Schülein, E. & Trofimov, V. M. 2011 Steady longitudinal vortices in supersonic turbulent separated flows. J. Fluid Mech. 672, 451476.
Selig, M. S., Andreopoulos, J., Muck, K. C., Dussauge, J. P. & Smits, A. J. 1989 Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J. 27 (7), 862869.
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer.
Smits, A. J., Matheson, N. & Joubert, P. N. 1983 Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27, 147157.
Souverein, L. J., Dupont, P., Debiève, J.-F., Dussauge, J.-P., van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J. 48 (7), 14801493.
Stolz, S. & Adams, N. A. 2003 Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15 (8), 2398.
Thomas, F. O., Putnam, C. M. & Chu, H. C. 1994 On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions. Exp. Fluids 18‐18 (1–2), 6981.
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23 (2), 79107.
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.
Tu, J. H.2013 On dynamic mode decomposition: theory and applications. PhD thesis, Princeton University.
Tu, J. H. & Rowley, C. W. 2012 An improved algorithm for balanced POD through an analytic treatment of impulse response tails. J. Comput. Phys. 231 (16), 53175333.
Ünalmis, O. & Dolling, D.1994 Decay of wall pressure field and structure of a Mach 5 adiabatic turbulent boundary layer. In Fluid Dynamics Conference, Reston, Virigina. AIAA.
Wang, B., Sandham, N. D., Hu, Z. & Liu, W. 2015 Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech. 767, 526561.
Willems, S.2016 Strömung-Struktur-Wechselwirkung in Überschallströmungen. PhD thesis, German Aerospace Center (DLR).
Wu, M. & Martín, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.
Zukoski, E. E. 1967 Turbulent boundary-layer separation in front of a forward-facing step. AIAA J. 5 (10), 17461753.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of spanwise-averaged snapshots. Flow modulation by means of mode Φ1. The animation shows contours of the pressure gradient magnitude in the range │∇p│δ0/p∞ = [0,10] at 8 equally spaced phase angles. The mean shock system together with the instantaneous separation bubble are highlighted by black solid lines.

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of spanwise-averaged snapshots. Flow modulation by means of mode Φ2. The animation shows contours of the pressure gradient magnitude in the range │∇p│δ0/p∞ = [0,10] at 8 equally spaced phase angles. The mean shock system together with the instantaneous separation bubble are highlighted by black solid lines.

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of spanwise-averaged snapshots. Flow modulation by means of mode Φ3. The animation shows contours of the pressure gradient magnitude in the range │∇p│δ0/p∞ = [0,10] at 8 equally spaced phase angles. The mean shock system together with the instantaneous separation bubble are highlighted by black solid lines.

 Video (864 KB)
864 KB
VIDEO
Movies

Pasquariello et al. supplementary movie
MDMD analysis of spanwise-averaged snapshots. Flow modulation by means of mode Φ4. The animation shows contours of the pressure gradient magnitude in the range │∇p│δ0/p∞ = [0,10] at 8 equally spaced phase angles. The mean shock system together with the instantaneous separation bubble are highlighted by black solid lines.

 Video (796 KB)
796 KB
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of wall-plane snapshots. Flow modulation by means of mode Φ1. The animation shows contours of the two-dimensional skin-friction coefficient at 8 equally spaced phase angles. The instantaneous separation and reattachment locations are highlighted by black solid lines.

 Video (2.5 MB)
2.5 MB
VIDEO
Supplementary materials

Pasquariello et al. supplementary movie
DMD analysis of wall-plane snapshots. Flow modulation by means of mode Φ2. The animation shows contours of the two-dimensional skin-friction coefficient at 8 equally spaced phase angles. The instantaneous separation and reattachment locations are highlighted by black solid lines.

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of wall-plane snapshots. Flow modulation by means of mode Φ3. The animation shows contours of the two-dimensional skin-friction coefficient at 8 equally spaced phase angles. The instantaneous separation and reattachment locations are highlighted by black solid lines.

 Video (1.6 MB)
1.6 MB
VIDEO
Movies

Pasquariello et al. supplementary movie
DMD analysis of wall-plane snapshots. Flow modulation by means of mode Φ3. The animation shows contours of the two-dimensional skin-friction coefficient at 8 equally spaced phase angles. The instantaneous separation and reattachment locations are highlighted by black solid lines.

 Video (1.6 MB)
1.6 MB

Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number

  • Vito Pasquariello (a1), Stefan Hickel (a2) and Nikolaus A. Adams (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed