Skip to main content
×
×
Home

The value of a fading tracer

  • S. Karpitschka (a1)
Abstract

Tracer particles are the workhorse of the fluid dynamicist for visualizing flow in transparent liquids. Thus a tracer becomes useless if its signal disappears, which frequently happens in practice, for instance due to bleaching. The opposite occurs in a recent work by Kim & Stone (J. Fluid Mech., vol. 850, 2018, pp. 769–783): the fading signal of a dissolving particle may reveal the local composition in a mixture. Such information is highly valuable in the study of evaporating droplets. In virtually all realistic cases, droplets consist of multiple components, ranging from trace impurities to engineered cocktails, which, for instance, generate a desired deposit pattern for a printing process. Different components typically evaporate at different rates, which causes inhomogeneities in droplet composition. Determining the latter is one of the main challenges in the field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The value of a fading tracer
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The value of a fading tracer
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The value of a fading tracer
      Available formats
      ×
Copyright
Corresponding author
Email address for correspondence: stefan.karpitschka@ds.mpg.de
References
Hide All
Atkins, P. & de Paula, J. 2009 Physical Chemistry. Oxford University Press.
Brutin, D. 2015 Droplet Wetting and Evaporation. Elsevier.
Brutin, D., Sobac, B., Loquet, B. & Sampol, J. 2011 Pattern formation in drying drops of blood. J. Fluid Mech. 667, 8595.
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.
Diddens, C., Tan, H., Lv, P., Versluis, M., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2017 Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking. J. Fluid Mech. 823, 470497.
Eggers, J. & Pismen, L. M. 2010 Nonlocal description of evaporating drops. Phys. Fluids 22 (11), 112101.
Foreman, M. R., Swaim, J. D. & Vollmer, F. 2015 Whispering gallery mode sensors. Adv. Opt. Photonics 7 (2), 168240.
Francois, A. & Himmelhaus, M. 2009 Whispering gallery mode biosensor operated in the stimulated emission regime. Appl. Phys. Lett. 94 (3), 031101.
Guéna, G., Poulard, C. & Cazabat, A. M. 2007 Evaporating drops of alkane mixtures. Colloids Surf. A 298 (1–2), 211.
Hu, H. & Larson, R. G. 2005 Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.
Karpitschka, S., Liebig, F. & Riegler, H. 2017 Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 33 (19), 46824687.
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.
Kim, H. & Stone, H. A. 2018 Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. J. Fluid Mech. 850, 769783.
Li, Y., Lv, P., Diddens, C., Tan, H., Wijshoff, H., Versluis, M. & Lohse, D. 2018 Evaporation-triggered segregation of sessile binary droplets. Phys. Rev. Lett. 120 (22), 224501.
Marin, A., Liepelt, R., Rossi, M. & Khler, C. J. 2016 Surfactant-driven flow transitions in evaporating droplets. Soft Matt. 12 (5), 15931600.
Noll, O., Fischer, K. & Gmehling, J. 1996 Vapor–liquid equilibria and enthalpies of mixing for the binary system water N-Methyl-2-Pyrrolidone in the temperature range 80–140 °C. J. Chem. Engng Data 41 (6), 14341438.
Pesach, D. & Marmur, A. 1987 Marangoni effects in the spreading of liquid mixtures on a solid. Langmuir 3 (4), 519524.
Soulie, V., Karpitschka, S., Lequien, F., Prené, P., Zemb, T., Möhwald, H. & Riegler, H. 2015 The evaporation behavior of sessile droplets from aqueous saline solutions. Phys. Chem. Chem. Phys. 17 (34), 2229622303.
Tan, H., Diddens, C., Lv, P., Kuerten, J. G. M., Zhang, X. & Lohse, D. 2016 Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating ouzo drop. Proc. Natl Acad. Sci. USA 113 (31), 86428647.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed