Skip to main content
×
Home
    • Aa
    • Aa

Vibration-induced drop atomization and bursting

  • A. J. JAMES (a1), B. VUKASINOVIC (a2), MARC K. SMITH (a2) and A. GLEZER (a2)
Abstract

A liquid drop placed on a vibrating diaphragm will burst into a fine spray of smaller secondary droplets if it is driven at the proper frequency and amplitude. The process begins when capillary waves appear on the free surface of the drop and then grow in amplitude and complexity as the acceleration amplitude of the diaphragm is slowly increased from zero. When the acceleration of the diaphragm rises above a well-defined critical value, small secondary droplets begin to be ejected from the free-surface wave crests. Then, quite suddenly, the entire volume of the drop is ejected from the vibrating diaphragm in the form of a spray. This event is the result of an interaction between the fluid dynamical process of droplet ejection and the vibrational dynamics of the diaphragm. During droplet ejection, the effective mass of the drop–diaphragm system decreases and the resonance frequency of the system increases. If the initial forcing frequency is above the resonance frequency of the system, droplet ejection causes the system to move closer to resonance, which in turn causes more vigorous vibration and faster droplet ejection. This ultimately leads to drop bursting. In this paper, the basic phenomenon of vibration-induced drop atomization and drop bursting will be introduced, demonstrated, and characterized. Experimental results and a simple mathematical model of the process will be presented and used to explain the basic physics of the system.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 54 *
Loading metrics...

Abstract views

Total abstract views: 201 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th July 2017. This data will be updated every 24 hours.