Skip to main content
×
×
Home

Viscous drops on a layer of the same fluid: from sinking, wedging and spreading to their long-time evolution

  • Nico Bergemann (a1) (a2), Anne Juel (a2) and Matthias Heil (a1)
Abstract

We study the axisymmetric spreading of drops deposited on a pre-existing horizontal layer of the same viscous fluid. Using a combination of experiments, numerical modelling based on the axisymmetric free-surface Navier–Stokes equations and scaling analyses, we explore the drops’ behaviour in a regime where the flow is driven by gravitational and/or capillary forces while inertial effects are small. We find that during the early stages of the drops’ evolution there are three distinct spreading behaviours depending on the thickness of the liquid layer. For thin layers the fluid ahead of a clearly defined spreading front is at rest and the overall behaviour resembles that of a drop spreading on a dry substrate. For thicker films, the spreading is characterised by an advancing wedge which is sustained by fluid flow from the drop into the layer. Finally, for thick layers the drop sinks into the layer, accompanied by significant flow within the layer. As the drop keeps spreading, the evolution of its shape becomes self-similar, with a power-law behaviour for its radius and its excess height above the undisturbed fluid layer. We employ lubrication theory to analyse the drop’s ultimate long-term behaviour and show that all drops ultimately enter an asymptotic regime which is reached when their excess height falls below the thickness of the undisturbed layer.

Copyright
Corresponding author
Email address for correspondence: M.Heil@maths.manchester.ac.uk
References
Hide All
Backholm, M., Benzaquen, M., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2014 Capillary levelling of a cylindrical hole in a viscous film. Soft Matt. 10 (15), 25502558.
Benzaquen, M., Fowler, P., Jubin, L., Salez, T., Dalnoki-Veress, K. & Raphael, E. 2014 Approach to universal self-similar attractor for the levelling of thin liquid films. Soft Matt. 10, 86088614.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739803.
Bradski, G. & Kaehler, A. 2008 Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Inc.
Cazabat, A. M. & Cohen-Stuart, M. A. 1986 Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90 (22), 58455849.
Chebbi, R. 1999 Capillary spreading of liquid drops on prewetted solid surfaces. J. Colloid Interface Sci. 211 (2), 230237.
Cormier, S. L., McGraw, J. D., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2012 Beyond Tanner’s law: crossover between spreading regimes of a viscous droplet on an identical film. Phys. Rev. Lett. 109 (15), 154501.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827.
Derjaguin, B. V. C. R. 1943 Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo-and motion-picture film coating. C. R. (Dokl.) Acad. Sci. URSS 39, 1316.
Donea, J., Giuliani, S. & Halleux, J. P. 1982 An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput. Meth. Appl. Mech. Engng 33 (1), 689723.
Edwards, W. P. 2000 The Science of Sugar Confectionery. Royal Society of Chemistry.
Fox, T. G. Jr. & Flory, P. J. 1948 Viscosity-molecular weight and viscosity–temperature relationships for polystyrene and polyisobutylene. J. Am. Chem. Soc. 70, 23842395.
Gaver, D. P., Halpern, D., Jensen, O. E. & Grotberg, J. B. 1996 The steady motion of a semi-infinite bubble through a flexible walled channel. J. Fluid Mech. 319, 2556.
Godoi, F. C., Prakash, S. & Bhandari, B. R. 2016 3D printing technologies applied for food design: status and prospects. J. Food Engng 179, 4454.
Hardy, W. B. 1919 The spreading of fluids on glass. Phil. Mag. 38, 4955.
Hazel, A. L., Heil, M., Waters, S. L. & Oliver, J. M. 2012 On the liquid lining in fluid-conveying curved tubes. J. Fluid Mech. 705, 213233.
Heil, M. & Hazel, A. L. 2006 oomph-lib – an object-oriented multi-physics finite-element library. In Fluid–Structure Interaction (ed. Schäfer, M. & Bungartz, H. J.), pp. 1949. Springer; oomph-lib is available as open-source software at http://www.oomph-lib.org.
Heine, D. R., Grest, G. S. & Webb, E. B. III 2003 Spreading dynamics of polymer nanodroplets. Phys. Rev. E 68, 061603.
Hewitt, I. J., Balmforth, N. J. & Mcelwaine, J. N. 2012 Granular and fluid washboards. J. Fluid Mech. 692, 446463.
Hewitt, R. E., Hazel, A. L., Clarke, R. J. & Denier, J. P. 2011 Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid Mech. 688, 88119.
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36 (1), 5569.
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.
Kalinin, V. V. & Starov, V. M. 1986 Viscous spreading of drops on a wetting surface. Colloid J. USSR 48 (5), 767771.
Kavehpour, H. P., Ovryn, B. & McKinley, G. H. 2003 Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Phys. Rev. Lett. 91 (19), 196104.
King, J. R. 1990 Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A 23 (16), 3681.
King, J. R. 2001 Thin-film flows and high-order degenerate parabolic equations. In IUTAM Symposium on Free Surface Flows (ed. King, A. C. & Shikmurzaev, Y. D.), pp. 718. Kluwer.
Kwok, D. Y., Cheung, L. K., Park, C. B. & Neumann, A. W. 1998 Study on the surface tensions of polymer melts using axisymmetric drop shape analysis. Polym. Engng Sci. 38 (5), 757764.
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.
Lees, R. 2012 Sugar Confectionery and Chocolate Manufacture. Springer Science & Business Media.
Lopez, J., Miller, C. A. & Ruckenstein, E. 1976 Spreading kinetics of liquid drops on solids. J. Colloid Interface Sci. 56 (3), 460468.
Maleki, M., Reyssat, M., Restagno, F., Quéré, D. & Clanet, C. 2011 Landau–Levich menisci. J. Colloid Interface Sci. 354 (1), 359363.
Middleman, S. 1995 Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops. Academic.
Milchev, A. & Binder, K. 2002 Droplet spreading: A Monte Carlo test of Tanner’s law. J. Chem. Phys. 116, 76917694.
Montañez-Soto, J. L., Machuca, M. A. V., González, J. V., Nicanor, A. & González-Cruz, L. 2013 Influence of the composition in the rheological behavior of high fructose syrups. Adv. Biores. 4 (2), 7782.
Nalwa, V. S. & Binford, T. O. 1986 On detecting edges. Pattern Anal. Mach. Intell., IEEE Trans. PAMI‐8 (6), 699714.
Patnode, W. & Scheiber, W. J. 1939 The density, thermal expansion, vapor pressure, and refractive index of styrene, and the density and thermal expansion of polystyrene. J. Am. Chem. Soc. 61 (12), 34493451.
Pierce, F., Perahia, D. & Grest, G. S. 2009 Spreading of liquid droplets on permeable polymeric surfaces. Europhys. Lett. 86 (6), 64004.
Pihler-Puzović, D., Juel, A., Peng, G. G., Lister, J. R. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1: Experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.
Poggio, T., Torre, V. & Koch, C. 1985 Computational vision and regularization theory. Nature 317 (6035), 314319.
Poggio, T., Voorhees, H. & Yuille, A. 1988 A regularized solution to edge detection. J. Complexity 4 (2), 106123.
Popescu, M. N., Oshanin, G., Dietrich, S. & Cazabat, A. M. 2012 Precursor films in wetting phenomena. J. Phys.: Cond. Matt. 24 (24), 243102.
Quincke, G. 1877 Über den Randwinkel und die Ausbreitung von Flüssigkeiten auf festen Körpern. Ann. Phys. 238 (10), 145194.
Salez, T., McGraw, J. D., Bäumchen, O., Dalnoki-Veress, K. & Raphaël, E. 2012 Capillary-driven flow induced by a stepped perturbation atop a viscous film. Phys. Fluids 24 (10), 102111.
Samsonov, V. M. 2011 On computer simulation of droplet spreading. Curr. Opin. Colloid Interface Sci. 16 (4), 303309.
Sani, R. L. & Gresho, P. M. 2000 Incompressible Flow and the Finite Element Method. Wiley.
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering (ed. Lin, M. C. & Manocha, D.), Lecture Notes in Computer Science, vol. 1148, pp. 203222. Springer; from the First ACM Workshop on Applied Computational Geometry.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.
Stillwagon, I. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 52515258.
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (9), 1473.
Taylor, C. & Hood, P. 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1 (1), 73100.
Thompson, A. B., Tipton, C., Juel, A., Hazel, A. L. & Dowling, M. 2014 Sequential deposition of overlapping droplets to form a liquid line. J. Fluid Mech. 761, 261281.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.
Zienkiewicz, O. C. & Zhu, J. Z. 1992 The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Intl J. Numer. Meth. Engng 33 (7), 13651382.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed