Skip to main content
×
×
Home

Viscous flow in a soft valve

  • K. Park (a1), A. Tixier (a2), A. H. Christensen (a1), S. F. Arnbjerg-Nielsen (a1), M. A. Zwieniecki (a2) and K. H. Jensen (a1)...
Abstract

Fluid–structure interactions are ubiquitous in nature and technology. However, the systems are often so complex that numerical simulations or ad hoc assumptions must be used to gain insight into the details of the complex interactions between the fluid and solid mechanics. In this paper, we present experiments and theory on viscous flow in a simple bioinspired soft valve which illustrate essential features of interactions between hydrodynamic and elastic forces at low Reynolds numbers. The set-up comprises a sphere connected to a spring located inside a tapering cylindrical channel. The spring is aligned with the central axis of the channel and a pressure drop is applied across the sphere, thus forcing the liquid through the narrow gap between the sphere and the channel walls. The sphere’s equilibrium position is determined by a balance between spring and hydrodynamic forces. Since the gap thickness changes with the sphere’s position, the system has a pressure-dependent hydraulic resistance. This leads to a nonlinear relation between applied pressure and flow rate: flow initially increases with pressure, but decreases when the pressure exceeds a certain critical value as the gap closes. To rationalize these observations, we propose a mathematical model that reduced the complexity of the flow to a two-dimensional lubrication approximation. A closed-form expression for the pressure drop/flow rate is obtained which reveals that the flow rate $Q$ depends on the pressure drop $\unicode[STIX]{x0394}p$ , sphere radius $a$ , gap thickness $h_{0}$ , and viscosity $\unicode[STIX]{x1D702}$ as $Q\sim \unicode[STIX]{x1D702}^{-1}a^{1/2}h_{0}^{5/2}(1-\unicode[STIX]{x0394}p/\unicode[STIX]{x0394}p_{c})^{5/2}\unicode[STIX]{x0394}p$ , where the critical pressure $\unicode[STIX]{x0394}p_{c}$ scales with the spring constant $k$ as $\unicode[STIX]{x0394}p_{c}\sim kh_{0}a^{-2}$ . These predictions compared favourably to the results of our experiments with no free parameters.

Copyright
Corresponding author
Email addresses for correspondence: mzwienie@ucdavis.edu, khjensen@fysik.dtu.dk
References
Hide All
Bearman P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195222.
Bellhouse B. J. & Talbot L. 1969 The fluid mechanics of the aortic valve. J. Fluid Mech. 35 (4), 721735.
Capron M., Tordjeman P., Charru F., Badel E. & Cochard H. 2014 Gas flow in plant microfluidic networks controlled by capillary valves. Phys. Rev. E 89 (3), 033019.
Chapman D. C., Rand R. H. & Cooks J. R. 1977 A hydrodynamical model of bordered pits in conifer tracheids. J. Theor. Biol. 67 (1), 1124.
Choat B., Cobb A. R. & Jansen S. 2008 Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177 (3), 608626.
Duprat C. & Stone H. A. 2015 Fluid-Structure Interactions in Low-Reynolds-Number Flows. Royal Society of Chemistry.
Gart S., Socha J. J., Vlachos P. P. & Jung S. 2015 Dogs lap using acceleration-driven open pumping. Proc. Natl Acad. Sci. USA 112 (52), 1579815802.
Grotberg J. B. & Jensen O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Heil M. & Hazel A. L. 2011 Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.
Heil M. & Hazel A. L. 2015 Flow in flexible/collapsible tubes. In Fluid-Structure Interactions in Low-Reynolds-Number Flows (ed. Duprat C. & Stone H.), pp. 280312. Royal Society of Chemistry.
Holmes D. P., Tavakol B., Froehlicher G. & Stone H. A. 2013 Control and manipulation of microfluidic flow via elastic deformations. Soft Matt. 9 (29), 70497053.
Jensen K. H., Berg-Sørensen K., Bruus H., Holbrook N. M., Liesche J., Schulz A., Zwieniecki M. A. & Bohr T. 2016 Sap flow and sugar transport in plants. Rev. Mod. Phys. 88 (3), 035007.
Kim W. & Bush J. W. M. 2012 Natural drinking strategies. J. Fluid Mech. 705, 725.
Lancashire J. R. & Ennos A. R. 2002 Modelling the hydrodynamic resistance of bordered pits. J. Expl Bot. 53 (373), 14851493.
Ledesma-Alonso R., Guzmán J. E. V. & Zenit R. 2014 Experimental study of a model valve with flexible leaflets in a pulsatile flow. J. Fluid Mech. 739, 338362.
Luo X. Y. & Pedley T. J. 1996 A numerical simulation of unsteady flow in a two-dimensional collapsible channel. J. Fluid Mech. 314, 191225.
Luo X. Y. & Pedley T. J. 2000 Multiple solutions and flow limitation in collapsible channel flows. J. Fluid Mech. 420, 301324.
McCulloh K. A., Sperry J. S. & Adler F. R. 2003 Water transport in plants obeys Murray’s law. Nature 421 (6926), 939942.
Park K., Kim W. & Kim H.-Y. 2014 Optimal lamellar arrangement in fish gills. Proc. Natl Acad. Sci. USA 111 (22), 80678070.
Patil P. P. & Tiwari S. 2008 Effect of blockage ratio on wake transition for flow past square cylinder. Fluid Dyn. Res. 40 (11), 753778.
Sahin M. & Owens R. G. 2004 A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16 (5), 13051320.
Schulte P. J. 2012 Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow. New Phytol. 193 (3), 721729.
Smistrup K. & Stone H. A. 2007 A magnetically actuated ball valve applicable for small-scale fluid flows. Phys. Fluids 19 (6), 063101.
Sotiropoulos F., Le T. B. & Gilmanov A. 2016 Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48, 259283.
Wexler J. S., Trinh P. H., Berthet H., Quennouz N., du Roure O., Huppert H. E., Lindner A. & Stone H. A. 2013 Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720, 517544.
Williamson C. H. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.
Williamson C. H. K. & Govardhan R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
Yang P. J., Pham J., Choo J. & Hu D. L. 2014 Duration of urination does not change with body size. Proc. Natl Acad. Sci. USA 111 (33), 1193211937.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Park et al. supplementary movie 1
Experimental movie of a soft valve with water and $z_d$ = 2.9 mm

 Video (1.7 MB)
1.7 MB
VIDEO
Movies

Park et al. supplementary movie 2
Experimental movie of a soft valve with water and $z_d$ = 3.6 mm. The observed oscillation frequency is $f_{ ext{obs}}$ ~ 2.7 Hz, which is significantly slower than the systems's spring-mass oscillation frequency $f_{ ext{spring}}=1/(2\pi)(k/m)^{1/2}=32$ Hz.

 Video (4.8 MB)
4.8 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 10
Total number of PDF views: 149 *
Loading metrics...

Abstract views

Total abstract views: 275 *
Loading metrics...

* Views captured on Cambridge Core between 11th December 2017 - 17th January 2018. This data will be updated every 24 hours.