Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T13:01:00.027Z Has data issue: false hasContentIssue false

Vortex-induced rotation of a square cylinder under the influence of Reynolds number and density ratio

Published online by Cambridge University Press:  02 May 2024

Rui-Yong Mou
Affiliation:
Research Institute of Aero-Engine, Beihang University, Beijing 100191, PR China LCS, Ecole Centrale de Pékin, Beihang University, Beijing 100191, PR China
Wei-Xi Huang
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing, 100084, PR China
Xing-Rong Huang
Affiliation:
LCS, Ecole Centrale de Pékin, Beihang University, Beijing 100191, PR China
Le Fang*
Affiliation:
LCS, Ecole Centrale de Pékin, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: le.fang@buaa.edu.cn

Abstract

Numerical simulations are carried out on the vortex-induced rotations of a freely rotatable rigid square cylinder in a two-dimensional uniform cross-flow. A range of Reynolds numbers between 40 and 150 and density ratios between 0.1 and 10 are considered. Results show eight different characteristic regimes, expanding the classification of Ryu & Iaccarino (J. Fluid Mech., vol. 813, 2017, pp. 482–507). New regimes include the transition and wavy rotation regimes; in the ${\rm \pi}$-limited oscillation regime we observe multipeak subregimes. Moment-generating mechanisms of these regimes and subregimes are further elucidated. A phenomenon related to the influence of density ratio is the tooth-like shape of the ${\rm \pi} /2$-limit oscillation regime observed in the regime map, which is explained as a result of the imbalance relation between the main frequencies of rotation response and the vortex shedding frequency. In addition, existence of multiple regimes and multistable states are discussed, indicating multiple stable attractive structures in phase space.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amandolèse, X. & Hémon, P. 2010 Vortex-induced vibration of a square cylinder in wind tunnel. C. R. Méc. 338 (1), 1217.10.1016/j.crme.2009.12.001CrossRefGoogle Scholar
Arnal, M.P., Goering, D.J. & Humphrey, J.A.C. 1991 Vortex shedding from a bluff body adjacent to a plane sliding wall. Trans. ASME J. Fluids Engng 113, 384398.10.1115/1.2909508CrossRefGoogle Scholar
Assi, G.R.S., Bearman, P.W. & Meneghini, J.R. 2010 On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism. J. Fluid Mech. 661, 365401.10.1017/S0022112010003095CrossRefGoogle Scholar
Bao, Y., Wu, Q. & Zhou, D. 2012 Numerical investigation of flow around an inline square cylinder array with different spacing ratios. Comput. Fluids 55, 118131.10.1016/j.compfluid.2011.11.011CrossRefGoogle Scholar
Bearman, P.W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27 (5–6), 648658.10.1016/j.jfluidstructs.2011.03.021CrossRefGoogle Scholar
Cheng, L., Zhou, Y. & Zhang, M.M. 2003 Perturbed interaction between vortex shedding and induced vibration. J. Fluids Struct. 17 (7), 887901.10.1016/S0889-9746(03)00042-2CrossRefGoogle Scholar
Cheng, M., Whyte, D.S. & Lou, J. 2007 Numerical simulation of flow around a square cylinder in uniform-shear flow. J. Fluids Struct. 23 (2), 207226.10.1016/j.jfluidstructs.2006.08.011CrossRefGoogle Scholar
Griffin, O.M. 1985 Vortex shedding from bluff bodies in a shear flow: a review. Trans. ASME J. Fluids Engng 107, 298306.10.1115/1.3242481CrossRefGoogle Scholar
Han, P. & de Langre, E. 2022 There is no critical mass ratio for galloping of a square cylinder under flow. J. Fluid Mech. 931, A27.10.1017/jfm.2021.975CrossRefGoogle Scholar
Hao, H.-T., Qin, F.-H., Huang, W.-X. & Sun, D.-J. 2012 Multiple modes of filament flapping in a uniform flow. Chin. Phys. Lett. 29 (9), 094702.Google Scholar
Huang, W.X., Shin, S.J. & Sung, H.J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226 (2), 22062228.10.1016/j.jcp.2007.07.002CrossRefGoogle Scholar
Jia, K., Fang, L. & Huang, W.X. 2019 Coupled states of dual side-by-side inverted flags in a uniform flow. J. Fluids Struct. 91, 102768.10.1016/j.jfluidstructs.2019.102768CrossRefGoogle Scholar
Jiang, X., Andreopoulos, Y., Lee, T. & Wang, Z. 2016 Numerical investigations on the vortex-induced vibration of moving square cylinder by using incompressible lattice Boltzmann method. Comput. Fluids 124, 270277.10.1016/j.compfluid.2015.06.004CrossRefGoogle Scholar
Juarez, H., Scott, R., Metcalfe, R. & Bagheri, B. 2000 Direct simulation of freely rotating cylinders in viscous flows by high-order finite element methods. Comput. Fluids 29 (5), 547582.10.1016/S0045-7930(99)00016-XCrossRefGoogle Scholar
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319345.10.1146/annurev-fluid-122316-045042CrossRefGoogle Scholar
Kim, B., Huang, W.-X., Shin, S.J. & Sung, H.J. 2012 Flexible ring flapping in a uniform flow. J. Fluid Mech. 707, 129149.10.1017/jfm.2012.267CrossRefGoogle Scholar
Lau, E.M., Huang, W.-X. & Xu, C.-X. 2018 Progression of heavy plates from stable falling to tumbling flight. J. Fluid Mech. 850, 10091031.10.1017/jfm.2018.486CrossRefGoogle Scholar
Lee, J.H., Huang, W.-X. & Sung, H.J. 2014 Flapping dynamics of a flexible flag in a uniform flow. Fluid Dyn. Res. 46, 055517.10.1088/0169-5983/46/5/055517CrossRefGoogle Scholar
Lugt, H.J. 1980 Autorotation of an elliptic cylinder about an axis perpendicular to the flow. J. Fluid Mech. 99 (4), 817840.10.1017/S0022112080000924CrossRefGoogle Scholar
Lugt, H.J. 1983 Autorotation. Annu. Rev. Fluid Mech. 15, 123147.10.1146/annurev.fl.15.010183.001011CrossRefGoogle Scholar
Luo, C.S., Mou, R.Y., Huang, X.R., Huang, W.X. & Fang, L. 2023 A free-streamline boundary-layer model for small-amplitude oscillation regime of square cylinder under vortex-induced rotation. Phys. Fluids 35, 093602.10.1063/5.0160657CrossRefGoogle Scholar
Minewitsch, S., Franke, R. & Rodi, W. 1994 Numerical investigation of laminar vortex-shedding flow past a square cylinder oscillating in line with the mean flow. J. Fluids Struct. 8 (8), 787802.10.1016/S0889-9746(94)90280-1CrossRefGoogle Scholar
Mittal, S., Kumar, V. & Raghuvanshi, A. 1997 Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Intl J. Numer. Meth. Fluids 25 (11), 13151344.10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P3.0.CO;2-P>CrossRefGoogle Scholar
Pan, Z., Chen, Z. & Wu, H. 2019 Self-excited rotation and flow dynamics across a freely rotatable square cylinder confined between two parallel walls. Phys. Fluids 31 (8), 087109.10.1063/1.5109146CrossRefGoogle Scholar
Park, Y.G., Min, G., Ha, M.Y. & Yoon, H.S. 2015 Response characteristics of vortex around the fixed and freely rotating rectangular cylinder with different width to height ratios. Prog. Comput. Fluid Dyn. 15 (1), 19.10.1504/PCFD.2015.067328CrossRefGoogle Scholar
Qiu, T., Xu, Q., Du, X., Zhao, Y. & Lin, W. 2022 VIV of twin square cylinders in various configurations at a low Reynolds number. Ocean Engng 260, 112067.10.1016/j.oceaneng.2022.112067CrossRefGoogle Scholar
Robertson, I., Li, L., Sherwin, S.J. & Bearman, P.W. 2003 A numerical study of rotational and transverse galloping rectangular bodies. J. Fluids Struct. 17 (5), 681699.10.1016/S0889-9746(03)00008-2CrossRefGoogle Scholar
Ryu, S. 2018 Quadrant analysis on vortex-induced autorotation of a rigid square cylinder. J. Mech. Sci. Technol. 32 (6), 26292635.10.1007/s12206-018-0520-2CrossRefGoogle Scholar
Ryu, S. & Iaccarino, G. 2017 Vortex-induced rotations of a rigid square cylinder at low Reynolds numbers. J. Fluid Mech. 813, 482507.10.1017/jfm.2016.774CrossRefGoogle Scholar
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.10.1016/j.jfluidstructs.2004.02.005CrossRefGoogle Scholar
Sen, S., Mittal, S. & Biswas, G. 2011 Flow past a square cylinder at low Reynolds numbers. Intl J. Numer. Meth. Fluids 67 (9), 11601174.10.1002/fld.2416CrossRefGoogle Scholar
Shao, J., Shu, C., Liu, N. & Zhao, X. 2019 Numerical investigation of vortex induced rotation of two square cylinders in tandem arrangement. Ocean Engng 171, 485495.10.1016/j.oceaneng.2018.11.026CrossRefGoogle Scholar
Sohankar, A., Norbergb, C. & Davidson, L. 1997 Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. J. Wind Engng Ind. Aerodyn. 69–71, 189201.10.1016/S0167-6105(97)00154-2CrossRefGoogle Scholar
Tang, C., Liu, N.S. & Lu, X.Y. 2015 Dynamics of an inverted flexible plate in a uniform flow. Phys. Fluids 27 (7), 073601.10.1063/1.4923281CrossRefGoogle Scholar
Taylor, I. & Vezza, M. 1999 Calculation of the flow field around a square section cylinder undergoing forced transverse oscillations using a discrete vortex method. J. Wind Engng Ind. Aerodyn. 82 (1–3), 271291.10.1016/S0167-6105(99)00041-0CrossRefGoogle Scholar
Wang, H., Yan, Y., Chen, C., Ji, C. & Zhai, Q. 2019 Numerical investigation on vortex-induced rotations of a triangular cylinder using an immersed boundary method. China Ocean Engng 33 (6), 723733.10.1007/s13344-019-0070-0CrossRefGoogle Scholar
Wang, S., Zhu, L., Zhang, X. & He, G. 2011 Flow past two freely rotatable triangular cylinders in tandem arrangement. Trans. ASME J. Fluids Engng 133 (8), 081202.10.1115/1.4004637CrossRefGoogle Scholar
Williamson, C.H.K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.10.1017/S0022112089002429CrossRefGoogle Scholar
Williamson, C.H.K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36 (1), 413455.10.1146/annurev.fluid.36.050802.122128CrossRefGoogle Scholar
Williamson, C.H.K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.10.1016/S0889-9746(88)90058-8CrossRefGoogle Scholar
Xia, Y., Lin, J., Ku, X. & Chan, T. 2018 Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number. Phys. Fluids 30 (4), 043303.10.1063/1.5021877CrossRefGoogle Scholar
Yoon, D.H., Yang, K.S. & Choi, C.B. 2010 Flow past a square cylinder with an angle of incidence. Phys. Fluids 22 (4), 043603.10.1063/1.3388857CrossRefGoogle Scholar
Zaki, T.G., Sen, M. & Gad-El-Hak, M. 1994 Numerical and experimental investigation of flow past a freely rotatable square cylinder. J. Fluids Struct. 8 (7), 555582.10.1016/S0889-9746(94)90020-5CrossRefGoogle Scholar
Zhang, B., Mao, Z., Song, B., Ding, W. & Tian, W. 2018 Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM. Energy 144, 218231.10.1016/j.energy.2017.11.153CrossRefGoogle Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 835, 835839.10.1038/35048530CrossRefGoogle Scholar
Zhu, L. & Peskin, C.S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179 (2), 452468.10.1006/jcph.2002.7066CrossRefGoogle Scholar