Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-24T11:44:35.564Z Has data issue: false hasContentIssue false

Vortex-induced vibration of a streamwise and transversely rotating sphere

Published online by Cambridge University Press:  30 July 2025

Sandip Sarkar
Affiliation:
Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
Arnab Kumar De*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
*
Corresponding author: Arnab Kumar De, akd@iitg.ac.in

Abstract

We investigate the effect of streamwise and transverse rotation on the wake behind an elastically mounted sphere. Simulations are performed at a Reynolds number $Re=500$ over a range of reduced velocity $2\le U^{\ast }\le 12$, considering a low and high rotational speed (0.2 and 1), keeping the mass ratio $m^{\ast }=2$. Streamwise rotation yields a structural response akin to the non-rotating case, while transverse rotation triggers induced vibration at lower $U^{\ast }$ and sustains it across a wider range. Like the non-rotating case, the streamwise rotating sphere exhibits synchronous, high-amplitude vibration across the entire $U^\ast$ range, whereas for low transverse rotation, it is confined to $5\le U^{\ast }\le 6$. Cross-stream displacement of the sphere remains unaffected by streamwise rotation with increasing $U^{\ast }$. In contrast, it monotonically increases due to transverse rotation, driven by the Magnus force, as supported by our theoretical and numerical estimations. While the spiral shedding mode dominates at $\Omega _{x}=0.2$, twisted hairpin and twisted spiral modes emerge as the rotation rate is increased. On the other hand, we observe the hairpin (HP) mode, as seen in the non-rotating case, for low transverse rotation. The HP mode gives rise to the ring vortical mode at the far wake, and with an increase in $U^\ast$, the wake shows small-scale stretched threads and reconnected bridgelets. Wake fluctuations increase with a streamwise rotation that saturates at higher $U^{\ast }$ during synchronisation, while desynchronisation at dimensionless transverse rotation rate $\Omega _{z}=1$ induces intermittent low-amplitude vibration via the Magnus effect. Space–time reconstruction at the near wake shows an undisturbed helical vortex core at $\Omega _{x}=0.2$ and $U^{\ast }=5$, which bifurcates at $\Omega _{x}=1$ owing to the centrifugal-induced distortion. At $\Omega _{x}=1$ and $U^{\ast }=5$, the phase difference between $(y, C_{y})$ and $(z, C_{z})$ exhibits in-phase synchrony with occasional phase slips. The wake vortex remains unaffected by the transverse rotation of the sphere; however, a streamwise rotating sphere couples the wake, leading to a rotational lock-in. The wake rotation shifts from anti-clockwise to clockwise sense earlier (in $U^\ast$) at a lower rotation rate. The reduced velocity is seen to have a favourable effect on the transfer of the sphere’s rotational inertia onto the wake as the measured penetration depth increases with $U^{\ast }$. Insights from the present research will aid in understanding complex flow interactions in rotational systems, improving efficiency, stability and control in modern engineering applications.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aswathy, M.S. & Sarkar, S. 2022 Spatiotemporal dynamics of a vortex induced vibration system in the presence of stochastic inflow fluctuations. J. Fluids Struct. 113, 103678.10.1016/j.jfluidstructs.2022.103678CrossRefGoogle Scholar
Behara, S., Borazjani, I. & Sotiropoulos, F. 2011 Vortex-induced vibrations of an elastically mounted sphere with three degrees of freedom at Re = 300: hysteresis and vortex shedding modes. J. Fluid Mech. 686, 426450.10.1017/jfm.2011.339CrossRefGoogle Scholar
Behara, S. & Sotiropoulos, F. 2016 Vortex-induced vibrations of an elastically mounted sphere: the effects of Reynolds number and reduced velocity. J. Fluids Struct. 66, 5468.10.1016/j.jfluidstructs.2016.07.005CrossRefGoogle Scholar
Bourguet, R. & Jacono, D.L. 2014 Flow-induced vibrations of a rotating cylinder. J.Fluid Mech. 740, 342380.10.1017/jfm.2013.665CrossRefGoogle Scholar
De, A.K. 2016 A diffuse interface immersed boundary method for convective heat and fluid flow. Intl J. Heat Mass Transfer 92, 957969.10.1016/j.ijheatmasstransfer.2015.09.022CrossRefGoogle Scholar
De, A.K. 2018 A diffuse interface immersed boundary method for complex moving boundary problems. J. Comput. Phys. 366, 226251.10.1016/j.jcp.2018.04.008CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2021 Dependence of wake structure on pitching frequency behind a thin panel at Re = 1000. J. Fluid Mech. 924, A33.10.1017/jfm.2021.570CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2022 Vortex induced vibration of a circular cylinder colliding with a rigid wall. Phys. Rev. Fluids 7 (6), 064702.10.1103/PhysRevFluids.7.064702CrossRefGoogle Scholar
Dobson, J., Ooi, A. & Poon, E.K.W. 2014 The flow structures of a transversely rotating sphere at high rotation rates. Comput. Fluids 102, 170181.10.1016/j.compfluid.2014.07.001CrossRefGoogle Scholar
Giacobello, M., Ooi, A. & Balachandar, S. 2009 Wake structure of a transversely rotating sphere at moderate Reynolds numbers. J. Fluid Mech. 621, 103130.10.1017/S0022112008004655CrossRefGoogle Scholar
Govardhan, R. & Williamson, C.H.K. 1997 Vortex-induced motions of a tethered sphere. J. Wind Engng Ind. Aerodyn. 375, 6971.Google Scholar
Govardhan, R. & Williamson, C.H.K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.10.1017/S0022112000001233CrossRefGoogle Scholar
Govardhan, R. & Williamson, C.H.K. 2005 Vortex-induced vibrations of a sphere. J.Fluid Mech. 531, 1147.10.1017/S0022112005003757CrossRefGoogle Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12 (9), 14221429.10.1088/0957-0233/12/9/307CrossRefGoogle Scholar
van Hout, R., Katz, A. & Greenblatt, D. 2013 Acoustic control of vortex-induced vibrations of a tethered sphere. Phys. Fluids 25 (7), 077102.10.1063/1.4812181CrossRefGoogle Scholar
Jauvtis, N., Govardhan, R. & Williamson, C.H.K. 2001 Multiple modes of vortex-induced vibration of a sphere. J. Fluids Struct. 15 (3–4), 555563.10.1006/jfls.2000.0348CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Johnson, T.A. & Patel, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.10.1017/S0022112098003206CrossRefGoogle Scholar
Khalak, A. & Williamson, C.H.K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13 (7–8), 813851.10.1006/jfls.1999.0236CrossRefGoogle Scholar
Kim, D. 2009 Laminar flow past a sphere rotating in the transverse direction. J. Mech. Sci. Technol. 23 (2), 578589.10.1007/s12206-008-1001-9CrossRefGoogle Scholar
Kim, D. & Choi, H. 2002 Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 461, 365386.10.1017/S0022112002008509CrossRefGoogle Scholar
Konstantinidis, E., Zhao, J., Leontini, J., Jacono, D.L. & Sheridan, J. 2020 Phase dynamics of effective drag and lift components in vortex-induced vibration. J. Fluids Struct. 96, 103028.10.1016/j.jfluidstructs.2020.103028CrossRefGoogle Scholar
Krakovich, A., Eshbal, L. & van Hout, R. 2013 Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered sphere in uniform flow. Exp. Fluids 54 (11), 1615.10.1007/s00348-013-1615-2CrossRefGoogle Scholar
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.10.1017/S0022112099004164CrossRefGoogle Scholar
Lee, H., Hourigan, K. & Thompson, M.C. 2013 Vortex-induced vibration of a neutrally buoyant tethered sphere. J.Fluid Mech. 719, 97128.10.1017/jfm.2012.634CrossRefGoogle Scholar
Lorite-Díez, M. & Jiménez-González, J.I. 2020 Description of the transitional wake behind a strongly streamwise rotating sphere. J. Fluid Mech. 896, A18.10.1017/jfm.2020.342CrossRefGoogle Scholar
Lu, X.Y. & Dalton, C. 1996 Calculation of the timing of vortex formation from an oscillating cylinder. J. Fluids Struct. 10 (5), 527541.10.1006/jfls.1996.0035CrossRefGoogle Scholar
Magnus, G. 1853 Über die abweichung der geschosse, und: Über eine abfallende erscheinung bei rotierenden körpern. Ann. Phys. 164.10.1002/andp.18531640102CrossRefGoogle Scholar
Mittal, R. 1999 A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids. Intl J. Numer. Meth. Fluids 30 (7), 921937.10.1002/(SICI)1097-0363(19990815)30:7<921::AID-FLD875>3.0.CO;2-33.0.CO;2-3>CrossRefGoogle Scholar
Morsi, S.A. & Alexander, A.J. 1972 An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55 (2), 193208.10.1017/S0022112072001806CrossRefGoogle Scholar
Niazmand, H. & Renksizbukut, M. 2003 Surface effects on transient three-dimensional flows around rotating spheres at moderate Reynolds numbers. Comput. Fluids 32 (10), 14051433.10.1016/S0045-7930(02)00115-9CrossRefGoogle Scholar
Pan, D. & Shen, T.T. 2009 Computation of incompressible flows with immersed bodies by a simple ghost cell method. Intl J. Numer. Meth. Fluids 60 (12), 13781401.10.1002/fld.1942CrossRefGoogle Scholar
Poon, E.K.W., Ooi, A.S.H., Giacobello, M., Iaccarino, G. & Chung, D. 2014 Flow past a transversely rotating sphere at Reynolds numbers above the laminar regime. J. Fluid Mech. 759, 751781.10.1017/jfm.2014.570CrossRefGoogle Scholar
Pradeep, D.S. & Hussain, F. 2001 Core dynamics of a strained vortex: instability and transition. J. Fluid Mech. 447, 247285.10.1017/S0022112001005869CrossRefGoogle Scholar
Pregnalato, C.J. 2003 Flow-induced vibrations of a tethered sphere. PhD thesis, Monash University.Google Scholar
Rajamuni, M.M., Thompson, M.C. & Hourigan, K. 2018 a Transverse flow-induced vibrations of a sphere. J.Fluid Mech. 837, 931966.10.1017/jfm.2017.881CrossRefGoogle Scholar
Rajamuni, M.M., Thompson, M.C. & Hourigan, K. 2018 b Vortex-induced vibration of a transversely rotating sphere. J. Fluid Mech. 847, 786820.10.1017/jfm.2018.309CrossRefGoogle Scholar
Rajamuni, M.M., Thompson, M.C. & Hourigan, K. 2019 Vortex-induced vibration of elastically-mounted spheres: a comparison of the response of three degrees of freedom and one degree of freedom systems. J. Fluids Struct. 89, 142155.10.1016/j.jfluidstructs.2019.02.005CrossRefGoogle Scholar
Rajamuni, M.M., Thompson, M.C. & Hourigan, K. 2020 Vortex dynamics and vibration modes of a tethered sphere. J.Fluid Mech. 885, A10.10.1017/jfm.2019.928CrossRefGoogle Scholar
Robins, B. 1972 New Principle of Gunnery (of 1742). Richmond Publishing.Google Scholar
Roos, F.W. & Willmarth, W.W. 1971 Some experimental results on sphere and disk drag. AIAA J. 9 (2), 285291.10.2514/3.6164CrossRefGoogle Scholar
Rubinow, S.I. & Keller, J.B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11 (03), 447459.10.1017/S0022112061000640CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study on votex shedding from sphere in a uniform flow. Trans. ASME 112, 386392.Google Scholar
Sareen, A., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2018 The effect of imposed rotary oscillation on the flow-induced vibration of a sphere. J. Fluid Mech. 855, 703735.10.1017/jfm.2018.667CrossRefGoogle Scholar
Seo, J. & Mittal, R. 2011 A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230 (19), 73477363.10.1016/j.jcp.2011.06.003CrossRefGoogle ScholarPubMed
Seyed-Aghazadeh, B. & Modarres-Sadeghi, Y. 2015 An experimental investigation of vortex-induced vibration of a rotating circular cylinder in the crossflow direction. Phys. Fluids 27 (6), 067101.10.1063/1.4921683CrossRefGoogle Scholar
Sierra-Ausín, J., Lorite-Díez, M., Jiménez-González, J.I., Citro, V. & Fabre, D. 2022 Unveiling the competitive role of global modes in the pattern formation of rotating sphere flows. J. Fluid Mech. 942, A54.10.1017/jfm.2022.395CrossRefGoogle Scholar
Skarysz, M., Rokicki, J., Goujon-Durand, S. & Wesfreid, J.E. 2018 Experimental investigation of the wake behind a rotating sphere. Phys. Rev. Fluids 3 (1), 013905.10.1103/PhysRevFluids.3.013905CrossRefGoogle Scholar
Stout, E. & Hussain, F. 2016 External turbulence-induced axial flow and instability in a vortex. J. Fluid Mech. 793, 353379.10.1017/jfm.2016.123CrossRefGoogle Scholar
Tomboulides, A.G. & Orszag, S.A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.10.1017/S0022112000008880CrossRefGoogle Scholar
Williamson, C.H.K. & Ghovardhan, R. 1997 Dynamics and forcing of a tethered sphere in a fluid flow. J. Fluids Struct. 11 (3), 293305.10.1006/jfls.1996.0078CrossRefGoogle Scholar
Yao, J., Yang, Y. & Hussain, F. 2021 Dynamics of a trefoil knotted vortex. J. Fluid Mech. 923, A19.10.1017/jfm.2021.580CrossRefGoogle Scholar