Skip to main content Accessibility help

The wake of a two-dimensional ship in the low-speed limit: results for multi-cornered hulls

  • Philippe H. Trinh (a1) and S. Jonathan Chapman (a1)


In the Dagan & Tulin (J. Fluid Mech., vol. 51, 1972, pp. 529–543) model of ship waves, a blunt ship moving at low speeds can be modelled as a two-dimensional semi-infinite body. A central question for these reduced models is whether a particular ship design can minimize, or indeed eliminate, the wave resistance. In the previous part of our work (Trinh et al., J. Fluid Mech., vol. 685, 2011, pp. 413–439), we demonstrated why a single corner can never be made waveless. In this accompanying paper, we continue our investigations with the study of more general piecewise-linear, or multi-cornered ships. By using exponential asymptotics, we demonstrate how the production of waves can be directly ascertained by the positions and angles of the corners. In particular, this theory answers the question raised by Farrow & Tuck (J. Austral. Math. Soc. B, vol. 36, 1995, pp. 424–437) as to why certain bulbous-like obstructions can minimize the production of waves. General results for wavelessness are given for a class of hulls, and numerical computations of the nonlinear ship-wave problem are used to confirm analytical predictions. Finally, we discuss open questions regarding hulls without corners and more general three-dimensional bluff bodies.


Corresponding author

Email address for correspondence:


Hide All
Baba, E. 1976 Wave breaking resistance of ships. In Proceedings of International Seminar on Wave Resistance, pp. 75–92. Tokyo.
Boyd, J. P. 1998 Weakly Non-local Solitary Waves and Beyond-all-orders Asymptotics. Kluwer.
Brandsma, F. J. & Hermans, A. J. 1985 A quasi-linear free surface condition in slow ship theory. Schiffstechnik Bd. 32, 2541.
Chapman, S. J., King, J. R. & Adams, K. L. 1998 Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc. R. Soc. Lond. A 454, 27332755.
Chapman, S. J. & Mortimer, D. B. 2005 Exponential asymptotics and Stokes lines in a partial differential equation. Proc. R. Soc. Lond. A 461, 23852421.
Chapman, S. J., Trinh, P. H. & Witelski, T. P. 2013 Exponential asymptotics for thin film rupture. SIAM J. Appl. Maths 73 (1), 232253.
Chapman, S. J. & Vanden-Broeck, J.-M. 2002 Exponential asymptotics and capillary waves. SIAM J. Appl. Maths 62 (6), 18721898.
Chapman, S. J. & Vanden-Broeck, J.-M. 2006 Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299326.
Dagan, G. & Tulin, M. P. 1969 Bow waves before blunt ships. Tech. Rep., Office of Naval Research, Department of the Navy.
Dagan, G. & Tulin, M. P. 1972 Two-dimensional free-surface gravity flow past blunt bodies. J. Fluid Mech. 51 (3), 529543.
Dingle, R. B. 1973 Asymptotic Expansions: Their Derivation and Interpretation. Academic.
Farrow, D. E. & Tuck, E. O. 1995 Further studies of stern wavemaking. J. Austral. Math. Soc. B 36, 424437.
Grosenbaugh, M. A. & Yeung, R. W. 1989 Nonlinear free-surface flow at a two-dimensional bow. J. Fluid Mech. 209, 5775.
Hocking, G. C., Holmes, R. J. & Forbes, L. K. 2012 A note on waveless subcritical flow past a submerged semi-ellipse. J. Eng. Math. 81 (1), 18.
Keller, J. B. 1979 The ray theory of ship waves and the class of streamlined ships. J. Fluid Mech. 91, 465487.
Kostyukov, A. A. 1968 Theory of Ship Waves and Wave Resistance. Effective Communications.
Kotik, J. & Newman, D. J. 1964 A sequence of submerged dipole distributions whose wave resistance tends to zero. J. Math. Mech. 13, 693700.
Kuznetsov, N., Maz’ya, V. & Vainberg, B. 2002 Linear Water Waves: A Mathematical Approach. Cambridge University Press.
Lustri, C. J., McCue, S. W. & Binder, B. J. 2012 Free surface flow past topography: a beyond-all-orders approach. Eur. J. Appl. Maths 1 (1), 127.
Madurasinghe, M. A. D. 1988 Splashless ship bows with stagnant attachment. J. Ship Res. 32 (3), 194202.
Madurasinghe, M. A. D. & Tuck, E. O. 1986 Ship bows with continuous and splashless flow attachment. J. Austral. Math. Soc. B 27, 442452.
Newman, J. N., Webster, W. C., Wu, G. X., Mynett, A. E., Faulkner, D. & Victory, G. 1991 The quest for a three-dimensional theory of ship-wave interactions [and discussion]. Phil. Trans. R. Soc. Lond. A 334 (1634), 213227.
Ogilvie, T. F. 1968 Wave resistance: The low speed limit. Tech. Rep., Michigan University, Ann Arbor.
Ogilvie, T. F. 1970 Singular perturbation problems in ship hydrodynamics. Tech. Rep., Michigan University, Ann Arbor.
Olde Daalhuis, A. B., Chapman, S. J., King, J. R., Ockendon, J. R. & Tew, R. H.1995 Stokes Phenomenon and matched asymptotic expansions. SIAM J. Appl. Maths 55 (6), 14691483.
Pagani, C. D. & Pierotti, D. 2004 The subcritical motion of a semisubmerged body: solvability of the free boundary problem. SIAM J. Math. Anal. 36 (1), 6993.
Stoker, J. J. 1957 Water Waves: The Mathematical Theory with Applications. Interscience Publishers, Inc.
Trinh, P. H. 2010a Exponential asymptotics and Stokes line smoothing for generalized solitary waves. In Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances (ed. Herbert, Steinrück), pp. 121126. Springer.
Trinh, P. H. 2010b Exponential asymptotics and free-surface flows. PhD thesis, University of Oxford.
Trinh, P. H. & Chapman, S. J. 2013a New gravity-capillary waves at low speeds. Part 1. Linear theory. J. Fluid Mech. 724, 367391.
Trinh, P. H. & Chapman, S. J. 2013b New gravity-capillary waves at low speeds. Part 2. Nonlinear theory. J. Fluid Mech. 724, 392424.
Trinh, P. H., Chapman, S. J. & Vanden-Broeck, J.-M. 2011 Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech. 685, 413439.
Tuck, E. O. 1991a Ship-hydrodynamic free-surface problems without waves. J. Ship Res. 35 (4), 277287.
Tuck, E. O. 1991b Waveless solutions of wave equations. In Proceedings 6th International Workshop on Water Waves and Floating Bodies. MIT.
Tuck, E. O. & Vanden-Broeck, J.-M. 1984 Splashless bow flows in two-dimensions. In Proceedings of 15th Symp. Naval Hydrodynamics. National Academy.
Tulin, M. P. 2005 Reminiscences and reflections: Ship waves, 1950–2000. J. Ship Res. 49 (4), 238246.
Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. 1978 Divergent low-Froude-number series expansion of nonlinear free-surface flow problems. Proc. R. Soc. Lond. A 361, 207224.
Vanden-Broeck, J.-M. & Tuck, E. O. 1977 Computation of near-bow or stern flows using series expansion in the Froude number. In 2nd Internatinal Conference on Numerical Ship Hydrodynamics. Berkeley, California: University of California, Berkeley.
Yeung, R. W. & Ananthakrishnan, P. 1997 Viscosity and surface-tension effects on wave generation by a translating body. J. Engng Maths 32 (2), 257280.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

The wake of a two-dimensional ship in the low-speed limit: results for multi-cornered hulls

  • Philippe H. Trinh (a1) and S. Jonathan Chapman (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.