Skip to main content
    • Aa
    • Aa

Wall accumulation and spatial localization in particle-laden wall flows

  • G. Sardina (a1), P. Schlatter (a2), L. Brandt (a2), F. Picano (a1) and C. M. Casciola (a1)...

We study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.

Corresponding author
Email address for correspondence:
Hide All
1. del Álamo J. & Jiménez J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41.
2. Ayyalasomayajula S., Gylfason A., Collins L. R., Bodenschatz E. & Warhaft Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97 (14), 144507.
3. Balachandar S. & Eaton J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
4. Bec J., Biferale L., Cencini M., Lanotte A., Musacchio S. & Toschi F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 84502.
5. Calzavarini E., Cencini M., Lohse D. & Toschi F. 2008 Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett. 101 (8), 84504.
6. Canuto C., Hussaini M. Y., Quarteroni A. & Zang T. A. 1988 Springer.
7. Caporaloni M., Tampieri F., Trombetti F. & Vittori O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32 (3), 565568.
8. Casciola C. M., Gualtieri P., Jacob B. & Piva R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95 (2), 024503.
9. Casciola C. M., Gualtieri P., Jacob B. & Piva R. 2007 The residual anisotropy at small scales in high shear turbulence. Phys. Fluids 19, 101704.
10. Cerbelli S., Giusti A. & Soldati A. 2001 ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence. Intl J. Multiphase Flow 27 (11), 18611879.
11. Chevalier M., Schlatter P., Lundbladh A. & Henningson D. S. 2007 SIMSON: a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep., TRITA-MEK 2007:07. KTH Mechanics, Stockholm.
12. Coleman S. W. & Vassilicos J. C. 2009 A unified sweep–stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21, 113301.
13. Eaton J. K. & Fessler J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.
14. Elperin T., Kleeorin N. & Rogachevskii I. 1996 Self-excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett. 77 (27), 53735376.
15. Fessler J. R., Kulick J. D. & Eaton J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 3742.
16. Gerashchenko S., Sharp N. S., Neuscamman S. & Warhaft Z. 2008 Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255281.
17. Goto S. & Vassilicos J. C. 2008 Sweep–stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 54503.
18. Gualtieri P., Picano F. & Casciola C. M. 2009 Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629, 2539.
19. Kaftori D., Hetsroni G. & Banerjee S. 1995a Particle behaviour in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.
20. Kaftori D., Hetsroni G. & Banerjee S. 1995b Particle behaviour in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7, 1107.
21. Kline S. J., Reynolds W. C., Schraub F. A. & Runstadler P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.
22. Li Y., McLaughlin J. B., Kontomaris K. & Portela L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13, 2957.
23. Marchioli C. & Soldati A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.
24. Marchioli C., Soldati A., Kuerten J. G. M., Arcen B., Taniere A., Goldensoph G., Squires K. D., Cargnelutti M. F. & Portela L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.
25. Maxey M. R. & Riley J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883.
26. Mehlig B., Wilkinson M., Duncan K., Weber T. & Ljunggren M. 2005 Aggregation of inertial particles in random flows. Phys. Rev. E 72 (5), 051104.
27. Monchaux R., Bourgoin M. & Cartellier A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.
28. Moser R. D., Kim J. & Mansour N. N. 1999 Direct numerical simulation of turbulent channel flow up to inline-graphic
${\mathit{Re}}_{\tau } = 590$
. Phys. Fluids 11, 943.
29. Niño Y. & Garcia M. H. 1996 Experiments on particle turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.
30. Pan Y. & Banerjee S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 2733.
31. Picano F., Sardina G. & Casciola C. M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 3305.
32. Picciotto M., Marchioli C. & Soldati A. 2005 Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101.
33. Reeks M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14 (6), 729739.
34. Righetti M. & Romano G. P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.
35. Rouson D. W. I. & Eaton J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.
36. Sardina G., Picano F., Schlatter P., Brandt L. & Casciola C. M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3–4), 519532.
37. Shotorban B. & Balachandar S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.
38. Squires K. & Eaton J. 1991 Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.
39. Sundaram S. & Collins L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.
40. Toschi F. & Bodenschatz E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.
41. Wang L. P. & Maxey M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.
42. Young J. & Leeming A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 217 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.