Skip to main content Accessibility help
×
×
Home

Wall shear stress from jetting cavitation bubbles

  • Qingyun Zeng (a1), Silvestre Roberto Gonzalez-Avila (a1), Rory Dijkink (a2), Phoevos Koukouvinis (a3), Manolis Gavaises (a3) and Claus-Dieter Ohl (a1) (a4)...
Abstract

The collapse of a cavitation bubble near a rigid boundary induces a high-speed transient jet accelerating liquid onto the boundary. The shear flow produced by this event has many applications, examples of which are surface cleaning, cell membrane poration and enhanced cooling. Yet the magnitude and spatio-temporal distribution of the wall shear stress are not well understood, neither experimentally nor by simulations. Here we solve the flow in the boundary layer using an axisymmetric compressible volume-of-fluid solver from the OpenFOAM framework and discuss the resulting wall shear stress generated for a non-dimensional distance, $\unicode[STIX]{x1D6FE}=1.0$ ( $\unicode[STIX]{x1D6FE}=h/R_{max}$ , where $h$ is the distance of the initial bubble centre to the boundary, and $R_{max}$ is the maximum spherical equivalent radius of the bubble). The calculation of the wall shear stress is found to be reliable once the flow region with constant shear rate in the boundary layer is determined. Very high wall shear stresses of 100 kPa are found during the early spreading of the jet, followed by complex flows composed of annular stagnation rings and secondary vortices. Although the simulated bubble dynamics agrees very well with experiments, we obtain only qualitative agreement with experiments due to inherent experimental challenges.

Copyright
Corresponding author
Email address for correspondence: claus-dieter.ohl@ovgu.de
References
Hide All
Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137154.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Chahine, G. L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.
Cole, R. H. 1965 Underwater Explosions. Dover.
Deshpande, M. D. & Vaishnav, R. N. 1982 Submerged laminar jet impingement on a plane. J. Fluid Mech. 114, 213236.
Deshpande, M. D. & Vaishnav, R. N. 1983 Wall stress distribution due to jet impingement. J. Eng. Mech. 109 (2), 479493.
Dijkink, R. & Ohl, C.-D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.
Gonzalez-Avila, S. R., Huang, X., Quinto-Su, P. A., Wu, T. & Ohl, C.-D. 2011 Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation. Phys. Rev. Lett. 107 (7), 074503.
Kim, T.-H. & Kim, H.-Y. 2014 Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field. J. Fluid Mech. 750, 355371.
Kim, W., Kim, T.-H., Choi, J. & Kim, H.-Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94 (8), 081908.
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016a Numerical simulation of a collapsing bubble subject to gravity. Phys. Fluids 28 (3), 032110.
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016b Simulation of bubble expansion and collapse in the vicinity of a free surface. Phys. Fluids 28 (5), 052103.
Krasovitski, B. & Kimmel, E. 2004 Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (8), 973979.
Le Gac, S., Zwaan, Ed, van den Berg, A. & Ohl, C.-D. 2007 Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip 7 (12), 16661672.
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.
MacDonald, J. R. 1969 Review of some experimental and analytical equations of state. Rev. Mod. Phys. 41 (2), 316349.
Maisonhaute, E., Brookes, B. A. & Compton, R. G. 2002a Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J. Phys. Chem. B 106 (12), 31663172.
Maisonhaute, E., Prado, C., White, P. C. & Compton, R. G. 2002b Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: shear stress in ultrasonic cleaning. Ultrason. Sonochem. 9 (6), 297303.
Miller, S. T., Jasak, H., Boger, D. A., Paterson, E. G. & Nedungadi, A. 2013 A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132143.
Narayanan, V., Seyed-Yagoobi, J. & Page, R. H. 2004 An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. Intl J. Heat Mass Transfer 47 (8), 18271845.
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006b Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000 The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351375.
Reuter, F. & Mettin, R. 2016 Mechanisms of single bubble cleaning. Ultrason. Sonochem. 29, 550562.
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).
Schlichting, H., Gersten, K., Krause, E. & Oertel, H. 1955 Boundary-layer Theory, vol. 7. Springer.
Visser, C. W., Gielen, M. V, Hao, Z., Le Gac, S., Lohse, D. & Sun, C. 2015 Quantifying cell adhesion through impingement of a controlled microjet. Biophys. J. 108 (1), 2331.
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84 (2), 719731.
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.
Wang, Q. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 745, 509536.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.
Ye, T. & Bull, J. L. 2006 Microbubble expansion in a flexible tube. J. Biomech. Engng 128 (4), 554563.
Zijlstra, A., Janssens, T., Wostyn, K., Versluis, M., Mertens, P. W. & Lohse, D. 2009 High speed imaging of 1 MHz driven microbubbles in contact with a rigid wall. In Solid State Phenomena, vol. 145, pp. 710. Trans Tech.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Supplementary materials

Zeng et al. supplementary movie
Resolved flow close to the boundary during bubble collapse and re-expansions.

 Video (14.0 MB)
14.0 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed